

Criteria 7 – INSTITUTIONAL VALUES AND BEST PRACTICES

SUPPORTING DOCUMENT FOR 7.1.3

Green audit/environmental audit report from recognized bodies

INDEX

S.No	Content	Page No.
1	Green audit report from recognized bodies	2-72
2	Environmental audit report from recognized bodies	73-128

GREEN AUDIT REPORT

for

Baba Farid Vidyak Society

(Muktsar Road Campus, Bathinda, Punjab, India)

- Baba Farid College of Engineering and Technology
- Baba Farid College of Management and Technology
- Baba Farid College
- Baba Farid College of Education

Prepared & Submitted By

ECO LABORATORIES & CONSULTANTS PVT. LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 certified Company QCI-NABET, MOEF&CC, NABL and PPCB approved Laboratory ECO Bhawan, E-207, Industrial Area, Phase VIIIB, Sector-74, Mohali-160071, (Punjab) Tel: 8872043185, Website: www.ecoparyavaran.org

(April 2021)

TABLE OF CONTENTS

Sr. No.	Description	Page No.
1.	Executive Summary	3
2.	About Baba Farid Vidyak Society	6
3.	About Green Audit	8
4.	Scope and Goals of Green Audit	8
5.	Objectives of Green Audit	9
6.	Benefits of Green Audit	9
7.	Target Areas of Green Audit	10
8.	Methodology Adopted for Green Audit	14
9.	Auditing for Water Resource Management	17
10.	Auditing for Waste Management	23
11.	Auditing of Environmental Management	29
12.	Outdoor Environment - AQI	30
13.	Indoor Environment - Visual and Thermal Comfort	36
14.	Auditing for Health and Safety	40
15.	Auditing for Green Campus Management	43
16.	Auditing for Carbon Footprint	50
17.	Evaluation of Audit Findings	54
18.	Recommendations	56
19.	Preparation of Action Plan for Audit	58
20.	About Eco Group	61
21.	Team of Experts for the Study	62
22.	Approvals of Eco Laboratory	64
23.	Acknowledgement	70

Executive Summary

Executive Summary

A Nation's growth starts from its educational institutions, where the ecology is thought as a prime factor of development associated with environment. A clean and healthy environment aids effective learning and provides a conducive learning environment. Educational institutions now a day are becoming more sensitive to environmental factors and more concepts are being introduced to make them eco-friendly.

To preserve the environment within the campus, various viewpoints are applied by the several educational institutes to solve their environmental problems such as promotion of the energy savings, recycle of waste, water reduction, water harvesting etc. The activities pursued by institutes can also create a variety of adverse environmental impacts. To protect such situation Energy Audit, Green Audit and Environment Audit are required to be conducted in these institutions. Energy Audit pave the way to save energy consequently reducing Carbon Emissions. Environmental auditing is a process whereby an organization's environmental performance is tested against its environmental policies and objectives. Green audit is defined as an official examination of the effects an institute has on the environment. It must also be under stood that Energy Audit, Green Audit and Environment Audit are inter related to each other. If you save Energy, it will save Environment, it will save human life and save energy.

Eco campus is a concept implemented in many educational institutions, all over the world to make them sustainable because of their mass resource utilization and waste discharge in to the environment. Waste minimization plans for the educational institute are now mandatory to maintain the cleanliness of the campus. To find out the environmental performance of the educational institutions and to analyze the possible solutions for converting the educational campus as eco-campus the conduction of Green Auditing of institution is essential.

The green auditing of Baba Farid Vidyak Society enables to assess the life style, action and its impact on the environment. This is the first attempt to conduct Environment, Energy and green auditing of this campus. This audit was mainly focused on greening indicators like consumption of energy in terms of electricity and fossil fuel, quality of soil and water, vegetation, waste management practices and carbon foot print of the campus etc. Initially a questionnaire survey was conducted to know about the existing resources of the campus and resource consumption pattern of the students and staffs in the campus. In order to assess the environmental quality, the samples were collected from different locations of the institute and analyzed for applicable

parameters. Finally, a report pertaining environmental management plan with strength, weakness and suggestion on the environmental issue of campus are documented.

Green Audit can be defined as systematic identification, quantification, recording, reporting and analysis of components of environmental diversity. The 'Green Audit' aims to analyze the environmental practices within and outside the institutional campus, which will have an impact on the eco-friendly ambience. It was initiated with the motive of inspecting the work conducted within the organizations whose exercises can cause risk to the health of inhabitants and the environment. Through Green Audit, one gets a direction as how to improve the condition of environment and there are various factors that have determined the growth of carrying out Green Audit. Green audit has been assigned for the assessment of the institute for internal and self-monitoring purpose.

Thus it is imperative that the Baba Farid Vidyak Society evaluates its own contributions toward a sustainable future. As environmental sustainability is becoming an increasingly important issue for the nation, the role of higher educational institutions in relation to environmental sustainability is more prevalent.

Component of Audit

About Baba Farid Vidyak Society

About Baba Farid Vidyak Society

Baba Farid Vidyak Society is a registered society under Societies Registration Act (XXI of 1860 and as amended by Punjab Amendment Act 1957) at Muktsar Road, Bathinda with a mission of "Academic Excellence for Empowerment." Baba Farid Vidyak Society has been running the following Higher Educational Institutions under the ambit of Baba Farid Group of Institutions:

- 1. Baba Farid College of Engineering and Technology
- 2. Baba Farid College of Management and Technology
- 3. Baba Farid College
- 4. Baba Farid College of Education

All the colleges are approved by respective statuary bodies of Government of India and Government of Punjab such as National Council for Teacher Education (NCTE) and All India Council for Technical Education (AICTE) and the Punjab State Council for Agricultural Education. These colleges are affiliated with state run Punjabi University, Patiala and Maharaja Ranjit Singh Punjab Technical University, Bathinda.

About Green Audit

About Green Audit

Climate change and its impact, has brought into focus the need for environmental protection as a global agenda. It has emerged as the pillar for sustainable development of the world. The UN Sustainable Development Goals (SDG's) are an important step in ensuring nation's responsiveness towards environmental protection. The Legal and the policy framework of the country have incorporated many environmental measures, involving all stakeholders in the mission. In this context, the Educational Institution has been responsible and responsive in implementing green practices, such as green plantation, rain water harvesting structures, solid waste management, liquid waste management, e-waste management, solar powered campus, energy conservation etc.

Green Audit can be defined as systematic identification, quantification, recording, reporting and analysis of components of environmental diversity. The 'Green Audit' aims to analyze the environmental practices within and outside the institutional campus, which will have an impact on the eco-friendly ambience. It was initiated with the motive of inspecting the work conducted within the organizations whose exercises can cause risk to the health of inhabitants and the environment.

Through Green Audit, one gets a direction as how to improve the environment quality with sustainable development and growth. Thus it is imperative that the Baba Farid Vidyak Society evaluates its own contributions toward a sustainable future. As environmental sustainability is becoming an increasingly important issue for the nation, the role of higher educational institutions in relation to environmental sustainability is more prevalent.

Scope and Goals of Green Audit

A clean and healthy environment aids effective learning and provides a conducive learning environment. There are various efforts around the world to address environmental education issues. Green Audit is the most efficient and ecological way to manage environmental problems. It is a kind of professional care which is the responsibility of each individual who are the part of economic, financial, social, environmental factor. It is necessary to conduct green audit in institute campus because students become aware of the green audit, its advantages to save the planet and they become good citizen of our country. Thus Green audit becomes necessary at the institute level. Green audit can be a useful tool for a college to determine how and where they are using the most energy or water or resources; the college can then consider how to implement changes and make savings. It can also be used to determine the type and volume of waste, which can be used for a recycling project or to improve waste minimization plan. Green auditing and

the implementation of mitigation measures is a win-win situation for all the college, the learners and the planet. It can also create health consciousness and promote environmental awareness, values and ethics. It provides staff and students better understanding of Green impact on campus. Green auditing promotes financial savings through reduction of resource use. It gives an opportunity for the development of ownership, personal and social responsibility for the students and teachers.

Objectives of Green Audit

The main aim objectives of this green audit is to assess the environmental quality and the management strategies being implemented in the institute. The specific objectives are:

- To assess the quality of the water and soil in the institute
- To monitor the energy consumption pattern of the institute
- To quantify the liquid and solid waste generation and management plans in the campus.
- To assess the carbon foot print of the campus
- To assess whether the measures implemented by the institute have helped to reduce the Carbon Footprint.
- To impart environment management plans of the institute
- Providing a database for corrective actions and future plans.
- To assess whether extracurricular activities of the Institution support the collection, recovery, reuse and recycling of solid wastes.
- To identify the gap areas and suggest recommendations to improve the Green Campus of the institute.

Benefits of Green Auditing

- More efficient resource management
- To provide basis for improved sustainability
- To create a green campus
- To enable waste management through reduction of waste generation, solid-waste and water recycling
- To create plastic free campus and evolve health consciousness among the stakeholders
- Recognize the cost saving methods through waste minimizing and managing
- Authenticate conformity with the implemented laws
- Empower the organizations to frame a better environmental performance
- Enhance the alertness for environmental guidelines and duties

- Impart environmental education through systematic environmental management approach and Improving environmental standards
- Benchmarking for environmental protection initiatives
- Financial savings through a reduction in resource use
- Development of ownership, personal and social responsibility for the Institute and its environment
- Green audit is important criteria for self-monitoring and assessment of ongoing activities and further improvements in the institute.

Target Areas of Green Audit

Green audit forms part of a resource management process. Although they are individual events, the real value of green audit is the fact that they are carried out, at defined intervals, and their results can illustrate improvement or change over time. Eco-campus concept mainly focuses on the efficient use of energy and water; minimize waste generation or pollution and also economic efficiency.

All these indicators are assessed in the process of "Green Auditing of this educational institute". Eco-campus focuses on the reduction of contribution to emissions, procure a cost effective and secure supply of energy, encourage and enhance energy use conservation, promotes personal action, reduce the institute's energy and water consumption, reduce wastes to landfill, and integrate environmental considerations into all contracts and services considered to have significant environmental impacts. Target areas included in this green auditing are

- Water Resource management,
- Waste management,
- Green campus management
- Environment management
- Health and Safety management
- Carbon footprint management

Auditing for Water Management

Water is a natural resource; all living organisms depend on water. While freely available in many natural environments, in human settlements potable (drinkable) water is less readily available. Groundwater depletion and water contamination are taking place at an alarming rate. Hence it is essential to examine the quality and usage of water in the institute.

Water auditing is conducted for the evaluation of facilities of raw water intake and determining the facilities for water treatment and reuse. The concerned auditor investigates the relevant method that can be adopted and implemented to balance the demand and supply of water.

Water audit has following advantages as

- Water audits provide decision making tools to utility managers, directors, and operators. i.e., knowing where water is being used in your system allows you to make informed decisions about investing resources such as time, labour and money.
- Water audits allow managers to efficiently reduce water losses in the system.
- Reducing water used at the source may even result in delaying or avoiding capital investments such as a new well, more treatment technology or additional water rights.
- Water audits also identify which water uses are earning revenue for the utility and which water uses are not. Thus, System personnel can increase revenue by institute ensuring all appropriate uses are being accurately measured and billed. This leads to more financial capacity in the water system, reduced cost per customer and better management of the water resource.
- Creating awareness among water users i.e., customers can see and understand that the utility is taking proactive steps to manage wasted water and save for the future.
- It is an effective educational and public relations tool for the water system.

Auditing for Waste Management

Human activities create waste, and it is the way these wastes are handled, stored, collected and disposed of, which can pose risks to the environment and to public health. Pollution from waste is aesthetically unpleasing and results in large amounts of litter in our communities which can cause health problems. Solid waste can be divided into three categories as bio-degradable, non-biodegradable and hazardous waste. Bio-degradable wastes include food wastes, canteen waste, wastes from toilets etc. Non-biodegradable wastes include what is usually thrown away in homes and schools such as plastic, tins and glass bottles etc. Hazardous waste is waste that is likely to be a threat to health or the environment like cleaning chemicals, acids and petrol. Unscientific management of these wastes such as dumping in pits or burning them may cause harmful discharge of contaminants into soil and water supplies, and produce greenhouse gases contributing to global climate change respectively. Special attention should be given to the handling and management of hazardous waste generated in the institute. Bio-degradable waste can be effectively utilized for energy generation purposes through anaerobic digestion or can be

converted to fertilizer by composting technology. Non-biodegradable waste can be utilized through recycling and reuse. Thus the minimization of solid waste is essential to a sustainable institute. The auditor diagnoses the prevailing waste disposal policies and suggests the best way to combat the problems.

Auditing for Green Campus Management

Trees play an important ecological role within the urban environment, as well as support improved public health and provide aesthetic benefits to cities. In one year, a single mature tree will absorb up to 48 pounds of carbon dioxide from the atmosphere, and release it as oxygen. The amount of oxygen released by the trees of the campus is good for the people in the campus. So while you are busy studying and working on earning those good grades, all the trees in campus are also working hard to make the air cleaner for you.

Auditing for Carbon Footprint

Burning of fossil fuels (such as petrol) has an impact on the environment through the emission of greenhouse gases into the atmosphere. The most common greenhouse gases are carbon dioxide, water vapours, methane, nitrous oxide and ozone. Of all the greenhouse gases, carbon dioxide is the most prominent greenhouse gas, comprising 402 ppm of the Earth's atmosphere. The release of carbon dioxide gas into the Earth's atmosphere through human activities is commonly known as carbon emissions. Vehicular emission is the main source of carbon emission in the campus, hence to assess the method of transportation that is practiced in the institute is important.

Methodology for Green Audit

Methodology Adopted for Green Audit

The methodology adopted for this audit is comprising of following process steps as

Data Collection

In preliminary data collection phase, exhaustive data collection was performed using different tools such as observation, survey communicating with responsible persons and measurements.

Following steps are taken for data collection:

- The team approaches to each department, library, hostel and canteen etc.
- Data about the general information is collected by observation and interview.
- The power consumption of appliances is recorded by taking an average value in some cases.

Data Analysis

Detailed analysis of data collected include calculation of energy consumption, analysis of latest electricity bill of the campus, understanding the tariff plans provided by state Electricity Board. Data related to water usages are also analyzed using appropriate methodology.

Recommendation

On the basis of results of data analysis and observations, some steps for reducing power and water consumption were recommended. Proper treatments for waste were also suggested. Use of fossil fuels has to be reduced for the sake of community health.

The above target areas particular to the institute was evaluated through questionnaire circulated among the students for data collection. Five categories of questionnaires were distributed.

Onsite Visit

Two-days site visit was conducted by the Experts of Green Audit Team of Eco Laboratories and Consultants Pvt. Ltd. on 14th and 15th April 2021. The key focus of the visit was on assessing the status of the green cover of the Institution, their waste management practices and energy conservation strategies etc. The sample collection was carried out during the visits to assess the quality of environment. The samples air, noise, drinking water and indoor environment were taken from institute. The sample collection, preservation, and analysis were done in the scientific manner as prescribed by the standard procedures.

Focus Group Discussion

The Focus Group discussions were held with the Club members, staff members and the management focusing various aspects of Green Audit. The discussion was focused on identifying the attitudes and awareness towards environmental issues at the institutional and local level.

Energy, waste management and Carbon foot print analysis Survey

With the help of teachers and students, the audit team has assessed the energy consumption pattern and waste generation, disposal and treatment facilities of the institute. The monitoring was conducted with a detailed questionnaire survey method.

Process for Environmental Audit

Process adopted for Environmental Audit

Auditing for Water Resource Management

Auditing for Water Resource Management

Process adopted for Auditing of Water Resource Management

Source of Water

The institute is getting total water requirement of 261 KLD from two sources of water as

- Ground water source (Tube wells 3 Nos.) and
- Rain water collection pond after suitable RO treatment.

The institute has valid permission from Punjab Water Regulation and Development Authority (PWRDA) for the extraction of ground water up to 182 KLD (182m³/day) from three tube wells.

Baseline of Water Consumption

In India, the design of water supply systems has been done using certain standards. Currently the standard being used is NBC, 2016. This specifies a consideration of use of the following:

- For communities with a population of between 20,000 to 100,000 @ 100 to 135 liters per head per day (Max. 135 lpcd has been considered).
- Persons working in normal working hours i.e. Staff @ 45 liters per head per day
- Visitors in the institute @ 15 liters per head per day

Population in Baba Farid Vidyak Society campus

The details of the population (per head counts) in the institute is presented in below Table

S. No	Particulars	Total Nos.	Residing	Non-residing
1	No. of Students enrolled in Baba Farid Vidyak Society	4268	280	3988
2	No. of Staff (teaching & non- teaching) in Baba Farid Vidyak Society	520	10	510
Total population in Baba Farid Vidyak Society		4788	290	4498

Total student & staff population in the Institute

Total population of daily visitors in the Institute

S. No	Particulars	Total Nos.
1	Daily visitors in Baba Farid Vidyak Society (avg.)	15

Thus, the total maximum permissible water consumption as per Standards laid as per NBC, 2016 is given in below Table.

S. No.	Particulars	Nos.	Water consumption per Person per day (Liters)	Total water consumption Liters per Day
1	No. of student & staff - Non-residing (Day time) Population in Baba Farid Vidyak Society	4498	45	2,02,410
2	No. of student & staff - Residing Population in Baba Farid Vidyak Society	290	100	29,000
3	Daily visitors in Baba Farid Vidyak Society (avg.)	15	15	225
			Grand Total	2,31,635

Total permissible water Consumption as per Standards laid as per NBC, 2016

An attempt was made as per NBC, 2016 to understand the demand of water supply and waste

water generated.

- Actual Water Demand = 2,31,635 liters per day
- Waste Water Generation = 80% of total water consumption = 1,85,308 liters per day

The source of water requirement is ground water (tube well) and rain water collection and the wastewater generation in campus is 1,85,308 liters per day. The institute has sewage treatment plant of 250 KLD based on MBBR technology and zero liquid discharge technique for an efficient water resource management.

Sewage Treatment Plant at Baba Farid Vidyak Society

The domestic treated water is being used in

- Treated water is used for watering the plantation and green area development.
- Treated water is also used for irrigation purpose. •
- Karnal technology has been adopted. •

Rainwater Harvesting

Rainwater harvesting is the accumulation and deposition of rainwater for reuse on-site, rather than allowing it to run off. Rainwater can be collected from roofs, and in many places the water collected is redirected to a deep pit (well, shaft, or borehole), a reservoir with percolation. It's uses include water for gardens, livestock, irrigation, domestic use with proper treatment etc. The harvested water can also be used as drinking water, longer-term storage and for other purposes such as groundwater recharge.

Rainwater harvesting provides an independent water supply during regional water restrictions and in developed countries is often used to supplement the main supply. It provides water when there is a drought, can help mitigate flooding of low-lying areas, and reduces demand on wells which may enable groundwater levels to be sustained. It also helps in the availability of potable water as rainwater is substantially free of salinity and other salts. Application of rainwater harvesting in urban water system provides a substantial benefit for both water supply and wastewater subsystems by reducing the need for clean water in water distribution system, less generated storm water in sewer system, as well as a reduction in storm water runoff polluting freshwater bodies. Supplying rainwater that has gone through preliminary filtration measures for non-potable water uses, such as toilet flushing, irrigation, and laundry, may be a significant part of a sustainable water management strategy.

The institute is managing eight ground water recharge pits and one rainwater harvesting pond/ tank in campus to collect rain water from institutional building blocks.

Rain Water Harvesting at Baba Farid Vidyak Society

The rain water collected is being used as various purposes as

- Ground water recharge
- Domestic purpose after RO treatment and
- Irrigation for plantation and green belt development.

Recommendations

- The institute has eight ground water recharge pits and one rainwater harvesting pond/ tank in campus to collect rain water from few institutional building blocks to overcome the gap between huge water demand and water conservation. More Rain Water Harvesting System to tap all Buildings/ Blocks is needed for effective water resource conservation.
- STP based on Zero liquid discharge need to upgraded
- Display boards for water conservation and don't misuse of water should be adopted.
- Automatic switching system/sensors to be adopted on taps for water use and pump sets used for overhead tank filling.

Auditing for Waste Management

Auditing for Waste Management

Pollution from waste is aesthetically unpleasing and results in large amounts of litter in our communities which can cause health problems. Plastic bags and discarded ropes and strings can be very dangerous to birds and other animals. This indicator addresses waste production and disposal, plastic waste, paper waste, food waste, and recycling. Solid waste can be divided into two categories: general waste and hazardous waste. General wastes include what is usually thrown away in homes and schools such as garbage, paper, tins and glass bottles. Hazardous waste is waste that is likely to be a threat to health or the environment like cleaning chemicals and petrol. Unscientific landfills may contain harmful contaminants that leach into soil and water supplies, and produce greenhouse gases contributing to global climate change. Furthermore, solid waste often includes wasted material resources that could otherwise be channeled into better service through recycling, repair, and reuse. Thus the minimization of solid waste is essential to a sustainable institute. The auditor diagnoses the prevailing waste disposal policies and suggests the best way to combat the problems. It is therefore essential that any environmentally responsible institution examine its waste processing practices.

Quantity of Waste Generated

Solid Waste

S. No.	Particulars	Nos.	Rate of solid waste generation (kg/person/day)	Total solid waste generation (kg/day)
1	No. of student & staff - Non-residing (Day time) Population in Baba Farid Vidyak Society	4498	0.2	899.6
2	No. of student & staff - Residing Population in Baba Farid Vidyak Society	290	0.4	116
3	Daily visitors in Baba Farid Vidyak Society (avg.)	15	0.2	3
			Grand Total	1,018.6

Generation of Solid Waste

The total solid waste generation in Baba Farid Vidyak Society is estimated as 1,018.6kg per day.

Management of Solid Wastes

An effective disposal of solid wastes lies on the collection and segregation of wastes in following category wise as

(a) Biodegradable wastes

Canteen waste generated in the institute is being handed over to local cattle keepers and pig farmers to feed their animals. Biodegradable waste as plant leaves, biomass and other wastes are collected about 50-100 kg per day. The collected waste is disposed in manure pits for the preparation organic manures in the range of 20-30 kg per day which is being utilized in garden and plantation and agro farming practices in campus area.

Biodegradable waste management through composting at Baba Farid Vidyak Society

Non-biodegradable

The garbage including non-biodegradable items as metals, bottles, plastics, cans and tins, broken glass wares etc. collected from Baba Farid Vidyak Society in the range of 40-50 kg per day.

Non-biodegradable waste is handed over/ soled to authorized venders with proper accounting on time to time to effective management. Though the institute has tie up M/s SMS Contractors and Suppliers, Bathinda for collection, disposal and management of solid wastes generated in the institute (Agreement letter is enclosed).

Whereas;

(a) The Society has its multi college Campus under the name and style of Baba Farid Group of Institutions at Muktsar Road, Village Deon, Bathinda (hereinafter called the Campus).

(b) The Firm is engaged in the business of various contract works and general supplies including and movement of Solid Waste.

(c) Sh. Harpal Singh, aforesaid, representative of the Society, is authorized to enter into, sign and execute agreementer control sign agreementer co

into, sign and execute agreements/ contracts/MOU/deeds for and on behalf of the society with various parties/concerns/persons for necessary provisions of facilities for the above campus of the Society vide Resolution Dated 22.04.2017 of the society. (d) Mr. Sukhmander Singh, Partner of the firm, is authorized to do all the deeds and thinnes related to the society.

things related to the affairs of the Firm for and on behalf of the Firm including any kind of business dealings and its agreements through its representations and signatures vide authorization of dated 08.08.2013 of the Firm.

(e) The Firm has been providing its services to the Society for collection, removal, transportation and disposal of all the solid waste from the campus of the society since 01.05.2018 as per terms and conditions mutually settled and agreed upon between the parties to this agreement.

Now, in consideration of mutual promises, the parties hereby conclude from verbal declarations, agreements in writing as under, for reference, legitimacy, recognition etc to avoid any future misunderstanding, conflict, litigation etc.:-I.Term/Validity of agreement

That this agreement is in force from since 1 st day of May, 2018 and shall remain in force until terminated by either party in accordance with the provisions of this agreement.

Scope of work, duties, rights, responsibilities and liabilities of the Firm:

 Scope of work - To collect, remove, transport, and dispose of all the solid waste from the designated dumping point of the campus premises of the Society at the scheduled time on daily basis i.e. from 1.00 PM to 3.00 PM.

 Management of tools-tackles and machinery - To manage, arrange and provide trained manpower, vehicles, tools, equipment, storage containers and all the facilities manifed for provision of social setting relification of the Social setting for the social setting for provide the setting setting setting for provide the setting setting setting for provide the setting for provide the setting setting setting setting setting for provide the setting setting setting setting setting for provide the setting sett

required for provision of services to the entire satisfaction of the Society. 3. Holiday - If a holiday occurs or falls on collection days, the collection ordinarily made on the next succeeding day. Society shall provide to the Firm the list of holidays

to be observed at its campus. 4. Hazardous waste - No hazardous waste shall be collected, removed, transported and disposed of by the Firm.

5. Solid waste - The solid waste covered in the scope of work of Firm shall also include the waste, other than routine waste, accumulating from any

event/function/program etc. of campus premises of the society. 6. Penalty - The Firm shall pay to the society Rs.1000/- (Rupees one thousand

only) per day as penalty in case of non-lifting of waste by the Firm as per agreement. 7. Ownership - The Firm shall be the sole owner of the solid waste material as and when it removes by the Firm from the premises of the Society.

5

Management of Bio-chemicals/Hazardous wastes

The institute is operating chemical testing laboratories, health centre, DG sets and other electrical appliances which generate biochemical hazardous wastes.

- Autoclaving is used to sterilize biological waste. Autoclave uses high-pressure steam to sterilize equipment and biological waste. The high pressure steam will reach temperatures up to 120-125°C, which is sufficient to kill most microorganisms including bacteria, viruses and spores.
- In chemistry lab, acid waste is neutralized with a base, while basic waste is neutralized with acid. The neutralized water then goes to distillation process to prepare distilled water for laboratory use.
- The used and waste oils from DG sets, machinery and other electronic appliances is sold to service vendors during maintenance and servicing work.

Management of E-Waste

Baba Farid Vidyak Society has opted "By back purchase policy" to reduce and minimize the ewaste. The new electronic instruments/ equipment, computers and peripherals are purchased under by the institute under by back scheme only so that no accumulation of e-waste generates in the campus.

However, other broken and outdated electronic items which can't be replaced are handed over to authorized vendor for proper disposal.

Management of Liquid Wastes

a) Domestic and Sewage

Domestic wastewater including sewage generation in the campus is about 1,85,308 liters per day (185 KLD). The institute has sewage treatment plant of 250 KLD based on MBBR technology for an efficient water resource management.

The domestic treated water is being used in

- Treated water is used for watering the plantation and green area development.
- Treated water is also used for irrigation purpose.
- Karnal technology has been adopted.

b) Laboratory Effluents

The institute has chemical testing laboratories generating effluent water as very less. So the adoption of treatment facility is not feasible.

In chemistry lab, acid waste is neutralized with a base, while basic waste is neutralized with acid. The neutralized water then goes to distillation process to prepare distilled water for laboratory use. Hence, the laboratory waste is being neutralized first and reused/ recycled then by distillation process for lab water requirements.

Excess effluent need to disposed of through a govt. approved and registered vendor.

Recommendations

- The recycle and reuse practices for solid waste management to be adopted to manage the natural resources and prevent environmental degradation.
- STP with ZLD technique is recommended to effective conservation of water resource.
- The hazardous wastes and e-wastes need to be regularly monitored with records and to ensure the hand over to the authorized vendors for the proper disposal to manage the natural resources and prevent environmental degradation.

Auditing for Environmental Management

Auditing of Environmental Management

As part of green audit of campus, we carried out the environmental monitoring of campus including illumination and ventilation in the class room. It was observed that illumination and ventilation is adequate considering natural light and fresh air circulations.

Natural ventilation and lighting system at BABA FARID VIDYAK SOCIETY

a) Outdoor Environment

Air Quality Index (AQI)

Air Quality Index (AQI) transforms complex air quality data of criteria pollutants into a single number (index value), with nomenclature and colour. AQI was launched on 17 October 2014 in India to disseminate information on air quality in an easily understandable form for the general public. AQI has six categories of air quality which are defined as Good, Satisfactory, Moderately Polluted, Poor, Very Poor and Severe. AQI is considered as 'One Number- One Colour-One Description' for the common man to judge the air quality within his vicinity. The formulation of the index was an initiative under *Swachh Bharat Mission (cleanliness Mission)*, based on the recommendations of IIT Kanpur and the Expert Group formed in this regard. The earlier measuring index in this regard was limited to three indicators, while the current measurement index had been expanded with five additional parameters. The measurement of AQI is based on following pollutants, namely

- Particulate Matter (size less than 10 $\mu m)$ or (PM_{10}),
- Particulate Matter (size less than 2.5 μm) or (PM_{2.5}),
- Nitrogen Dioxide (NO₂),

- Sulphur Dioxide (SO₂),
- Carbon Monoxide (CO),
- Ozone (O₃) and
- Ammonia (NH₃),

AQI	Associated Health Impacts
Good (0-50)	Minimal Impact
Satisfactory (51-100)	May cause minor breathing discomfort to sensitive people.
Moderately polluted (101-200)	May cause breathing discomfort to people with lung disease such as asthma, and discomfort to people with heart disease, children and older adults.
Poor (201–300)	May cause breathing discomfort to people on prolonged exposure, and discomfort to people with heart disease
Very Poor (301-400)	May cause respiratory illness to the people on prolonged exposure. Effect may be more pronounced in people with lung and heart diseases.
Severe (401-500)	May cause respiratory impact even on healthy people, and serious health impacts on people with lung/heart disease. The health impacts may be experienced even during light physical activity.

AQI Index values and their associated health impacts

Methodology of AQI

The ambient air quality has been assessed through scientifically designed ambient air quality monitoring network. The monitoring network was designed based on the following considerations:

- Meteorological conditions
- Geographical conditions
- Topography of the area
- Likely impacts and sensitive receptors

Ambient air quality monitoring network was established as per CPCB guidelines in triangular method @120-degree orientation of three sampling locations. Ambient air quality monitoring was done on 24 hourly basis at each identified locations simultaneously.

Parameters & Methods of Air Quality Monitoring

Test methods for determining Various Air Quality Parameters are described in below **Table** as

Test methods for determination of Air Quality Parameters

S. No.	Test Parameter	Test Method
1.	Particulate Matter (PM ₁₀)	IS:5182 (P-23) 2006 RA 2017
2.	Particulate Matter (PM _{2.5})	Lab SOP EL/SOP/AAQ/01
3.	Sulphur Dioxide (SO ₂)	IS:5182 (P-2) 2001 RA 2017
4.	Nitrogen Dioxide (NO ₂)	IS:5182 (P-6) 2006 RA 2017
5.	Ammonia (NH3)	Lab SOP EL/SOP/AAQ/02
6.	Ozone (O3)	IS:5182 (P-9):2006 RA 2014
7.	Carbon Monoxide (CO)	IS 5182 Part-10:1999, RA 2014

Sampling Procedure

Particulate samples for PM₁₀ were collected on Whatman glass fiber filters using respirable dust sampler (AAS 217NL, Ecotech) whereas samples for PM_{2.5} were collected on Whatman Quartz filter papers (47 mm diameter) using fine particulate sampler (AAS 127Mini, Ecotech). During sampling a laminar flow was maintained as 16.7 liters per min (1.0 m³ per hr) for PM_{2.5} and 1.13 m³ per minute for PM₁₀. The air sampling was done on 24 hourly basis at a nominal sampling height of 3 meter at each location. Gaseous sampling was done using Thermoelectrically cooled Gas sampler (AAS 109TE, Ecotech) whereas CO was collected in tedlar bag for the analysis by NDIR CO Analyzer (APMA-370, Horiba) and Benzene was collected in activated carbon absorber tubes for GC analysis.

Construction of Air Quality Index (AQI)

- Based on the measured ambient air concentrations, corresponding standards and likely health impact (known as health breakpoints), a sub-index is calculated for each of the pollutants.
- A sub-index is a linear function of concentration e.g. the sub-index for PM_{2.5} will be
 - **4** 51 at concentration 31 μg/m³,
 - **4** 100 at concentration 60 μg/m³, and
 - 4 75 at concentration of 45 μg/m³

The formula for calculating a sub-index is as follows:

Sub Index for a pollutant = Upper limit of the previous AQI category to which the pollutant's current reading would have fallen +[(current reading – upper limit of the previous reading category of the pollutant)* (width or interval of the AQI category for the current level of reading / width or interval of the current reading category of the pollutant)]

Eg. Sub-index for PM_{2.5}

If concentration is $150 \ \mu\text{g/m3}$, the sub index would be = 300 + [(150 - 120)*100/130] = 323

If concentration is $45 \mu g/m3$, the sub index would be = 30+[(45-30)*50/30] = 75

Fig. 7: Index and Sub-index of Pollutants

- Primarily two steps are involved in formulating an AQI: (i) formation of sub-indices (for each pollutant) and (ii) aggregation of sub-indices to get an overall AQI.
- Formation of sub-indices (I1, I2,..., In) for n pollutant variables (X1, X2..., Xn) is carried out using sub-index functions that are based on air quality standards and health effects. Mathematically;

$$I = f(Xi), i=1, 2,...,n$$
 [Eq. 1]

- Each sub-index represents a relationship between pollutant concentrations and health effect as the functional relationship between sub-index value (Ii) and pollutant concentrations (Xi).
- Aggregation of sub-indices, Ii is carried out with some mathematical function (described below) to obtain the overall index (I), referred to as AQI.

$$I = F(I1, I2, ..., In)$$
 [Eq. 2]

• The aggregation function usually is a summation or multiplication operation or simply a maximum operator.

Sub-indices (Step 1)

Sub-index function represents the relationship between pollutant concentration Xi and corresponding sub index Ii. It is an attempt to reflect environmental consequences as the concentration of specific pollutant changes. It may take a variety of forms such as linear, non-linear and segmented linear. Typically, the I-X relationship is represented as follows:

 $I = aX + \beta$ [Eq. 3]

Where, a =slope of the line, ß = intercept at X=0

The general equation for the sub-index (Ii) for a given pollutant concentration (Cp); as based on 'linear segmented principle' is calculated as:

$$Ii = [{(IHI-ILO)/(BHI-BLO)}*(Cp-BLO)]+ILO$$
[Eq. 4]

Where,

BHI = Breakpoint concentration greater or equal to given concentration.

BLO = Breakpoint concentration smaller or equal to given concentration.

IHI =AQI value corresponding to BHI

ILO = AQI value corresponding to BLO

Ip = Pollutant concentration

Aggregation of Sub-indices (Step 2)

Once the sub-indices are formed, they are combined or aggregated in a simple additive form or weighted additive form:

Weighted Additive Form

I = Aggregated Index = \sum WiIi (For i= 1,,n) [Eq. 5] where, \sum Wi = 1 Ii = sub-index for pollutant i n = number of pollutant variables Wi = weightage of the pollutant

Root-Sum-Power Form (non-linear aggregation form)

I = Aggregated Index = $[\Sigma Iip](1/p)$

[Eq. 6]

where,

p is the positive real number >1

Root-Mean-Square Form

I = Aggregated Index = $\{1/k (I12+I22+....+Ik2)\}0.5$ [Eq. 7]

Finally; AQI = Max (Ip) (where; p= 1,2,....,n; denotes n pollutants)

The AQI values and corresponding ambient concentrations (health breakpoints) for the identified eight pollutants are as follows:

AQI Category (Range)	Categories for various readings of pollutant based on health breakpoints/health impacts						
	PM10	PM2.5	NO ₂	03	CO	SO ₂	NH3
	24-hr	24-hr	24-hr	8-hr	8-hr	24-hr	24-hr
Good (0-50)	0-50	0-30	0-40	0-50	0-1.0	0-40	0-200
Satisfactory (51- 100)	51-100	31-60	41-80	51-100	1.1-2.0	41-80	201- 400
Moderately polluted (101-200)	101-250	61-90	81-180	101- 168	2.1- 10	81-380	401- 800
Poor (201-300)	251-350	91-120	181- 280	169- 208	10-17	381-800	801- 1200
Very poor (301- 400)	351-430	121- 250	281- 400	209- 748*	17-34	801-1600	1200- 1800
Severe (401-500)	430 +	250+	400+	748+*	34+	1600+	1800+

AQI Category, Pollutants and Health Breakpoints

*One hourly monitoring (for mathematical calculations only)

Calculator for Air Quality Index (AQI)

- For manual monitoring stations, an AQI calculator is developed by CPCB wherein data can be fed manually to get AQI value.
- The excel sheet for calculating AQI, as uploaded by CPCB

Interpretation of Air Quality Index (AQI)

 $\circ~$ The worst sub-index reflects overall AQI

For instance, if the sub index of $PM_{2.5}$ =75, SO_2 = 63, NO_2 =38 then the AQI will be 75 which is the same as the value of the sub index of $PM_{2.5}$.

- The Sub-indices for individual pollutants at a monitoring location are calculated using
 - ✓ 24-hourly average concentration value (8-hourly in case of CO and O₃)
 - ✓ Health breakpoint concentration range (e.g. AQI at 6 am on a day will incorporate data from 6am on previous day to the current day).
 - ✓ AQI is calculated by eight pollutants however, overall AQI can be calculated with available data for minimum three pollutants out of which one should necessarily be either PM_{2.5} or PM₁₀.
 - ✓ Minimum of 16 hours' data is considered necessary for calculating sub index
 - $\checkmark\,$ AQI index values can vary depending on the time of the day.
 - ✓ AQI reflects the status of the worst pollutant in that city. i.e. higher reading in one city can be due to high concentration of PM whereas in some other city it may be due to SO₂.
 - ✓ If one pollutant out of eight is in the "poor" category, then AQI will be in "poor" category.

For manual monitoring stations, data were fed manually in AQI calculator developed by CPCB to get AQI value. The AQI calculation has been depicted as

Air Quality Index (AQI) Calculator					
Date	DD-MM-YYYY	YYY INPUT Station NSIT			
Pollutants	Duration	Conc. in µg/m3 (CO in mg/m3)	Sub-Index	Check	AQI
PM10	24-hr avg	86	93	1	
PM _{2.5}	24-hr avg	54	96	1	
SO ₂	24-hr avg	11	13	1	86
NO ₂	24-hr avg	20	24	1	
СО	max 8-hr	0.11	6	1	

Air	Quality	Index	(AQI)	Calculator
-----	---------	-------	-------	------------

03	max 8-hr	22	19	1	
NH3	24-hr avg	20	7	1	

Concentrations of minimum three pollutants are required; one of them should be PM10 or PM_{2.5}. The check displays "1" when a non-zero value is entered

Interpretation of Air Quality Index (AQI)

Air Quality Index

Indicators & Categories of Air Quality Index

Good (0–50)
Satisfactory (51–100)
Moderately polluted (101–200)
Poor (201–300)
Very Poor (301–400)
Severe (401-500)

AQI Result

Test Results of Air Quality Index

Air Quality Index	Air Quality Status
86	Satisfactory (51–100)

The Air Quality Index (AQI) is observed as 81 that indicates the ambient air quality is Satisfactory at institute and safe for human health.

b) Indoor Environment

Indoor environment was monitored for visual comfort, thermal comfort, ventilation and noise levels in each institute blocks.

Visual and Thermal Comfort

Visual comfort was monitored using Lux monitor and thermal comfort was monitored by Heat stress analyzer for temperature and humidity levels.

a) Indoor Lux (Illumination) Monitoring

Photographic view of visual comfort and Lux Level Monitoring

b) Indoor Particulate Dust Level Monitoring

Photographic view of Indoor Dust Level Monitoring

c) Indoor Noise Level Monitoring

Indoor environment in respect to visual comfort, thermal comfort, noise levels and ventilation was found to be satisfactory in each block of the institute.

Auditing for Health and Safety

Auditing for Health and Safety

a) Fire Safety

Fire Safety Measures at Baba Farid Vidyak Society

Fire safety appliances are in place and appropriate in each department/sections. All fire safety system in each department of Baba Farid Vidyak Society are certified and approved from Punjab Fire Services (Bathinda MC).

b) Health Safety

Health community center/dispensary is operational in campus for primary health checkups and treatments in case of any medical emergency or medical requirements.

Health safety measures were reported in place as per requirements in respect to safe and potable drinking water supply with RO systems. Drinking water sample was tested for the purpose of portability and suitability of water quality. The available water quality was found to be safe for domestic and human consumption.

c) Traffic & Parking Area

The campus has designated parking area in place that is sufficient to manage daily traffic fleet in the campus due. Good traffic management practices reduce the accidental risks to students, staff and visitors coming to the campus.

Auditing for Green Campus Management

Auditing for Green Campus Management

Unfortunately, the biodiversity is facing serious threats from habitat loss, pollution, over consumption and invasive species. Species are disappearing at an alarming rate and each loss affects nature's delicate balance and our quality of life. Without this variability in the living world, ecological systems and functions would break down, with detrimental consequences for all forms of life, including human beings. Newly planted and existing trees decrease the amount of carbon dioxide in the atmosphere. Trees play an important ecological role within the urban environment, as well as support improved public health and provide aesthetic benefits to cities. In one year, a single mature tree will absorb up to 48 pounds of carbon dioxide from the atmosphere, and release it as oxygen. The amount of oxygen that a single tree produces is enough to provide one day's supply of oxygen for people. So while you are busy studying and working on earning those good grades, all the trees on campus are also working hard to make the air cleaner for us. Trees on our campus impact our mental health as well; studies have shown that trees greatly reduce stress, which a huge deal is considering many students are under some amount of stress. The institute is nestled amidst tall trees and lush green plants as

- Trees 71 species & 1969 Nos.
- Herbs & Shrubs 12 species & 685 Nos.
- Medicinal Plants 11 species & 25 Nos.
- Ornamental Plants 14 species.

Tree Plantation at Baba Farid Vidyak Society

List of Trees in Baba Farid Vidyak Society campus

Sr. No.	Name of Tree/ Plant	Nos.
1	Ficus Benjamina	200
2	Ficus Panda	100
3	Golden Ficus	15
4	R-Kuli Farm	3
5	Kadam	6
6	Kachnar	17
7	Pilkan	41
8	Malsari	69
9	Sukhchain	120
10	Putran Jiwa	24
11	Gulmohar	90
12	Termilia	20
13	Alstonia	70
14	Mohangani	15
15	Ashoka	48
16	Pagoda	44
17	Morpankhi	70
18	Fishtail Palm	30
19	Silver Rouk	41
20	Arjun	10
21	Chil	5
22	Goldern Bottle Brush	5
23	Pahadi Pipl	2
24	Zed Drofa	5
25	Cher	23
26	Fonus Palm	6
27	Chandani	8
28	Silver Okas	14
29	Kangi Palm	2
30	Heavy Cus	18
31	Amal tash	100
32	Neem	110

33	Thune	3
34	Sukhchain	100
35	Barkain	30
36	Haar Shingar	5
37	Toot	10
38	Bagan Belia	20
39	Crezuana	12
40	Amelia	35
41	Tikoma	5
42	Ficus	120
43	Bottle Palm	70
44	Rose	95
45	Jamun	120
46	Amaltash	10

List of Herbs & Shrubs in Baba Farid Vidyak Society campus

Sr. No.	Name of Tree/ Plant	Nos.
1	Marigold	60
2	Sweet william	50
3	Dianthus	25
4	Hollyhock	50
5	Rose	10
6	Calendual	120
7	Canaly tuff	50
8	Panzy	40
9	Ice Flower	60
10	Petunia	20
11	Рорру	100
12	Baby Sunflower	100

List of Medicinal Plants in Baba Farid Vidyak Society campus

Sr. No.	Name of Tree/ Plant	QTY
1	Rose	10
2	Lemon Grass	25
3	Tulsi	10
4	Insulin	10
5	Aloe Vera	7
6	Arjun	5
7	Carelamon	5
8	Sohanjuana	8
9	Kadhi Patta	4
10	Neem	4
11	Pathar Chatt	5

List of Ornamental Plants in Baba Farid Vidyak Society campus

Sr. No.	Name of Tree/ Plant
1	Gulmohar
2	Fish Tail Palm
3	Fox Tail Palm
4	Bottle Palm
5	Bougain Villea
6	Pagoda Tree
7	Thuja Tree
8	Bottle Brush
9	Silver Oak
10	Ashoka
11	Bamboo Palm
12	Amaltas
13	Ficus Durenta
14	Ficus Panda

List of Hydrophytes in Baba Farid Vidyak Society campus

S. No.	Plants	Common Names	Family
1.	Azolla pinnata	Azolla	Azollaceae
2.	Ceratophyllum submersum	Coon's tail	Ceratophyllaceae
3.	Eichhornia crassipes	Water hyacinth	Pontederiaceae
4.	Hydrilla verticillata	Water thyme	Hydrocharitaceae
5.	Marsilea quadrifolia	Water clover	Marsileaceae
6.	Nelumbo nucifera	Lotus	Nelumbonaceae
7.	Typha latifolia	Cat tail	Typhaceae

List of Palm in Baba Farid Vidyak Society campus

S. No.	Plants	Common Names	Family
1.	Calamus rotang	Rattan	Arecaceae
2.	Caryota urens	Fish palm	Arecaceae
3.	Cycas circinalis	Queen sago	Cycadaceae
4.	Cycas revoluta	Sago palm	Cycadaceae
5.	Dypsis lutescens	Golden cane bamboo	Arecaceae
6.	Livistona chinensis	China Palm	Arecaceae
7.	Phoenix dactylifera	Date palm	Arecaceae
8.	Roystonia regia	Royal Palm	Arecaceae

Green belt development with sufficient tree cover/ plantation is managed by the campus over 9.7 acres. Method of Irrigation adopted by the campus to manage green area has been depicted as

Sr. No.	Method	Plantation Type
1.	Flood Irrigations	For Mad/ Field Crops
2.	Basin System of Irrigation	For Ornamental Crops
3.	Check Basin/ Flooding	For Fruits

House Keeping

Baba Farid Vidyak Society ensures neat and clean environment in the educational campus. Consequently, buildings are kept clean and sanitized on regular basis on all working days. A good housekeeping practices were observed during audit.

Recommendations

- All trees in the campus should be with a track record
- Create automatic drip irrigation system during summer holidays
- Encouraging students and conducting competitions among departments for making the campus green.

Auditing for Carbon Footprint

Auditing for Carbon Footprint

Commutation of stakeholders has an impact on the environment through the emission of greenhouse gases into the atmosphere consequent to burning of fossil fuels (such as petrol and diesel vehicles). The most common greenhouse gases are carbon dioxide, water vapour, methane, nitrous oxide and ozone. Among the greenhouse gases, carbon dioxide is the most prominent greenhouse gas, comprising 402 ppm of the Earth's atmosphere. The release of carbon dioxide gas into the Earth's atmosphere through human activities is commonly known as carbon emissions.

An important aspect of doing an audit is to be able to measure your impact so that we can determine better ways to manage the impact. In addition to the water, waste, energy and biodiversity audits we can also determine what our carbon footprint is, based on the amount of carbon emissions created. One aspect is to consider the distance and method traveled between home and college every day. It undertakes the measure of bulk of carbon dioxide equivalents exhaled by the organization through which the carbon accounting is done. It is necessary to know how much the organization is contributing towards sustainable development. It is therefore essential that any environmentally responsible institution examine its carbon footprint.

Transportation

Distance should not be a constraint in reaching out for quality education. Keeping this in mind, Baba Farid Group of Institutions has provided a well-connected transport service to fetch the students as well as the faculty members from their locations to the college.

- A fleet of more than 125 buses ferry around 6000 students from nearby areas and distant locations.
- The facility covers more than 80+ kms of radius.
- The buses cover at least 120 different bus routes.
- Areas of six districts namely Bathinda, Barnala, Faridkot, Muktsar, Mansa and Sirsa are covered by bus routes.

The institute is operating common transportation facility for students and staff as buses for outdoor transport and E-Rickshaws for in door transport. Mostly students & staff is encouraged to use public transport.

Green Energy

Reducing the Carbon Footprints

- Installation of more solar panels or solar energy generation devices should be enhanced to reduce the electricity footprint of the campus. Terrace of each building can be utilized to produce electricity from tilt-able solar modules.
- The food waste generated from the institute hostel mess, guest house, canteens and staff quarters should be converted into the biogas which can be further utilized for hostel kitchens.
- Adoption of E-vehicle for common transportation facility and solar battery operated vehicles in campus to reduce carbon footprints and save environment.
- The Green computing or E-work is helping the organization to reduce footprint very effectively.
- The use of solar energy based lamps in streets and corridors in campus will reduce carbon footprint.
- The awareness should be made among the faculty, students and other employees regarding Clean Development Mechanism (CDM) to reduce the consumption of electricity and natural resources.
- Establish a system of carpooling among the staff to reduce the number of four wheelers coming to the institute.
- Encourage students and staff to use cycles and follow No Vehicle Day on one day in a week to save fuel consumption.
- As an outcome effort can be made to reduce carbon foot prints by using electrical vehicles in the campus and green computing in the administration and examination.

Evaluation of Audit Findings

Evaluation of Audit Findings

- Hanagement of solid wastes by authorized vendors is found satisfactory.
- **Wanagement of chemical hazardous wastes as laboratory effluents need to be stablished.**
- Management of biodegradable wastes by converting into manures using composting/ manure pits is appreciable.
- More rain water harvesing systems/ rechare pits need to be establish covering all buildings with seprate and dedicated drainange system to avoid surface runoff contaminations.
- Efforts of energy conservation by adopting solar pannels as water heater and street lights need to be established.
- Gardens with sufficient green belt in Baba Farid Vidyak Society premises are found well maintained.
- Green policy/Environmental policy statement indicating the commitment of the institute towards its environmental performance should be followed.
- Use of notice boards and signs to reduce over exploitation of natural resources need to be displayed.
- Environmental education programs have to be strengthened.
- Establish a purchase policy for environmental friendly materials
- Bio degradable waste may be used for non-conventional energy generation or steam generation for cooking food/washing cloths etc.
- Bio gas plant should be installed to manage biodegradable wastes
- Strengthen the environmental awareness programs with huge plantation and environment friendly techniques to protect the environment and natural resources.
- Initiative for carbon accounting such as adequate common transportation facilities for all students and staff is appreciable.
- Encourage students to use bicycles.
- A model solid waste management system based on 3R's (reduce, reuse and recycle) to be established to reduce undue pressure on municipal system and to convert solid wastes into valuable resources.
- Establish a plastic free campus and use of paper plates and cups in place of plastics for all functions in the institute.

Recommendations

Recommendations

Following are some of the key recommendation for improving campus environment:

- A model solid waste management system based on 3R's (reduce, reuse and recycle) to be established to reduce undue pressure on municipal system and to convert solid wastes into valuable resources.
- Management of Hazardous wastes as laboratory effluents need to be stablished. Chemical effluent water from laboratories and waste oils from DG sets, electrical appliances and other machinery need to handed over to govt. authorized and registered vendors only for effective management of hazardous wastes.
- Adoption of more rain water harvesting system need to be installed on remaining Building/ Blocks and automatic drip irrigation system to conserve the valuable water resources.
- Sewage treatment with zero liquid discharge is recommended to effective management of water resources.
- Automatic drip irrigation system need be adopted in plantation and green belt development areas and irrigation areas.
- Adoption of sufficient e-vehicle for common transportation facility and solar battery operated vehicles in campus to reduce carbon footprints and save environment.
- Adoption of more solar energy options to reduce the stress on natural resources, to prevent environmental degradation and economic viability.

Basic and Fundamental Components of environmental sustainability

Preparation of Action Plan for Audit

Preparation of Action Plan for Audit

There should be Committee formation for energy audit, green audit and environmental audit involving faculties and students. Policies referring to management and approach towards the use of resources need to be considered. The institute should have a green policy and environmental policy for its sustainable development. The environmental policy formulated by the management should be implemented meticulously. The institute should have a policy on awareness raising or training programs (for ground staff or kitchen staff for example) and an environment friendly procurement policy (the Institute's policy for purchasing ecofriendly materials). Green Audits are exercises which generate considerable quantities of valuable management information. The time and effort and cost involved in this exercise is often considerable and in order to be able to justify this expenditure, it is important to ensure that the findings and recommendations of the audit are considered at the correct level within the organization and that action plans and implementation programs result from the findings. Audit follow up is part of the wider process of continuous improvement. Without follow-up, the audit becomes an isolated event which soon becomes forgotten in the pressures of organizational priorities and the passing of time.

Exit Meeting

The exit meeting was conducted jointly by the experts of Eco Laboratories and Consultants Pvt. Ltd. and the team members of the institute. It was a mechanism to provide the management and staff a broad feedback on the preliminary findings of the audit team before completing the audited report. The exit meeting was held in the campus of institute on 15th April 2021. Clarification on certain information gathered was sought by the audit team from the management and staff of the institute.

Draft Audit Report

The information gathered by the audit team was consolidated as a draft audit report. This draft report was then circulated to the audit team and those directly concerned with the audit to check the report for accuracy. The draft green audit report was also discussed in the exit meeting.

Final Audit Report

The final audit report is the corrected final document which contains the findings and recommendations of the audit. It will also form one of the bases of future audits because the information it contains informs some of the tests and analyses that need to be performed in the future. Final Audit Report was submitted to the Principal / Director of the institute.

Follow Up and Action Plans

Green audits form a part of an on-going process. Innovative green initiatives have to be designed and implemented every year to make the institute environmentally sustainable. Follow up programs of green auditing recommendations should be done meticulously before next audit.

Next Audit

In order to promote continuous improvement, it is recommended to conduct the next green auditing during the year 2023.

Transparency of Green Audit Report

Green audit report is one of the useful means of demonstrating an organization's commitment to openness and transparency. If an organization believes it has nothing to hide from its stakeholders, then it should feel confident enough to make its green audit reports freely available to those who request them. As a basic rule, green audit reports should be made available to all stakeholders.

About Eco Group (Consultant)

ABOUT ECO GROUP

Eco Group is North India's reputed environmental organization Headquartered in Mohali (Chandigarh) that offers consultancy and environmental-related turnkey solutions for overall pollution abatement and sustainable development. We are a professional engineering firm with National level consultancy approved by QCI/ NABET and Environmental and Mechanical testing laboratory approved by MoEF&CC, NABL (ISO/IEC 17025:2017) and state boards.

Eco Group, established in 1998 has designed, engineered and executed more than 1,000 installations of Water, Domestic Sewage and Industrial Effluent Treatment Plants. With the help of our state-of-the-art technologies and apt infrastructure, we are proud to maintain an impeccable quality record, owing to our customer satisfaction levels. These treatment plants operate with the help of trained staff, including Sewage Treatment Plants (STPs), Effluent Treatment Plants (ETPs), Reverse Osmosis Plants (ROs), etc. In the last 20 years, we have undertaken several projects successfully and have created sustainable solutions to environmental issues.

Eco Group has two major business divisions as Eco Paryavaran Engineers & Consultants Pvt. Ltd. and Eco Laboratories & Consultants Pvt. Ltd. The former caters to consultancy and providing engineering solutions for environmental pollution whereas the latter pertains to the analytical and consultancy services in the field of lab testing and environmental studies. Eco Paryavaran is North India's leading supplier of pollution control equipment with world-class infrastructure.

Eco Laboratories is NABL (National Accreditation Board for Testing and Calibration Laboratories) accredited for ISO/IEC 17025:2017, approved by Ministry of Environment, Forest and Climate Change (MoEF&CC) & State Pollution Control Board (SPCBs) in the field of air, noise, wastes, water/wastewater and microbiological testing. Eco Laboratories & Consultants Pvt. Ltd. is also Government approved (ISO 9001:2015, ISO 14001:2015 and ISO 45001:2018) and National Accreditation Board for Education and Training (NABET).

Team of Experts for the Study

S.	Name of	Role of Expert	ID of Expert
1.	Dr. Sandeep Garg (Ph. D. & ME in Env. Sc., BE in Civil)	 Managing Director NABL approved authorized signatory MoEF&CC approved govt. analyst NABET approved EIA Coordinator & Functional Area Expert Chairman IWE & Ex-Advisor, GMADA 	
2.	Dr. Rai Singh (Ph. D. & M. Sc. Env. Sc. P.G. Diploma in Industrial Safety, Health & Env.)	 Dy. General Manager (Technical & Environment) MoEF&CC approved Govt. Analyst; NABL approved authorized signatory NABET approved Environmental Expert Worked in CPCB (2001-12) as Research Scientist 	
4.	Dr. Simranjit Kaur (M.Sc. & M.Phill.; Ph.D. in Solid Waste Management)	 Deputy General Manager – EMS & Biological Lab Quality Manager – Analytical Division NABL Technical Assessor, NABL approved authorized signatory MoEF&CC approved govt. analyst NABET approved EIA Coordinator & Functional Area Expert 	
5.	Mr. Maninder Preet Singh (Diploma in Electrical & Electronics)	Manager (Projects)	
6.	Mr. Umesh Kumar (M. Tech – Nanotech)	Technical Manager & Sr. Laboratory Analyst (Environment & Chemical) NABL approved authorized signatory	

Approvals of Eco Laboratory

Approvals of Eco Laboratory

MOEF&CC ACCREDITATION CERTIFICATE

रजिस्ट्री सं० डी० एल=-33004/99

REGD, NO. D. L.-33004/99

असम्बरण

EXTRAORDINARY

भाग 11-खण्ड 3-उप-खण्ड (ii)

PART II-Section 3-Sub-section (ii)

प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

मं. 758] नई दिल्ली, बुधवार, फरवरी 28, 2018/फाल्युन 9, 1939 No. 758] NEW DELHI, WEDNESDAY, FEBRUARY 28, 2018/PHALGUNA 9, 1939

पर्यावरण, बन और जसवायु परिवर्तन मंत्रालय

म जि सुचना

नई किली, 26 फरबरी, 2018

NOTIFICATION

New Delhi, the 26th February, 2018

S.O. 857(E).—In exercise of the powers conferred by clause (b) of sub-section (1) of section 12 and section 13 of the Environment (Protection) Act, 1986 (29 of 1986), read with rule 10 of the Environment (Protection) Rules, 1986, the Central Government hereby makes the following further amendments in the notification of the Government of India in the erstwhile Ministry of Environment and Forests, number S.O. 1174(E), dated the 18th July, 2007, namely: -

In the Table appended to the said notification, -

(i) for serial numbers 1,17,24,26,30,39,41,45,81,86,87,93,94,95,96 and 100 the entries relating thereto, the following serial numbers and entries shall be substituted, namely: -

S.No.	Name of the Laboratory	Name of the Govt. Analyst	Recognition with effect from and valid up to
(1)	(2)	(3)	(4)
-1	M/s Mantee Consultants Pvt. Ltd. D-36, Sector-VI, Noida-201301, Uttar Pradesh	 (i) Mr. Gaja Nand Mallick (ii) Dr. Vivek Dwivedi (iii) Mr. Sumit Verma 	26.02.2018 to 25.02.2023
17	M/s Idma Laboratories Limited	(i) Mr. Ankush Aggarwal	26.02.2018

[भाग ॥-	[भाग II-खण्ड X(ii)] भारत का राजपत्र : असाधारण		5	
	391, Industrial Area, Phase-1, Paunchkula- 160019,Haryana	(ii)Mr. Niranjan Dev Behl (iii) Dr. Rajendra Kumar Jain	to 25/02/2023	
24	M/s Newcon Consultants & Laboratories Pvt. Ltd. 8 th K.M. Stone, Delhi Meenut Road, Morta (Opp. Manan Dham Mandir), Ghaziabad- 201003, Uttar Pradesh	 (i) Mr. Pankaj Gupta (ii) Mr. Amit Kumar Singh (iii) Mr. Intek hab Khan 	26.02.2018 to 25.02.2023	
26	M/s Klean Laboratories & Research Pvt. Ltd. 402, Parushottam Plaza, Opp. Baner Telephone Exchange,Baner Road, Pune- 411045, Maharashtra	 Mr. Vishwas Waman Kale Mr. Sanjay Kamalakar Mardikar Ms. Manjusha Gaikwad 	26.02.2018 to 25.02.2023	
30	M/s Lawn Enviro Associates, "Lawn House" #184-C, Vengalrao Nagar, Hyderabad- 500038, Telangana	 (i) Mr. Devireddy Nagarujuna Reddy (ii) Ms. Chevula Anuradha (iii) Ms.Vangani Pallavi 	26.02.2018 to 25.02.2023	
39	M/s Team Test House. (A Unit of Team Institute of Science & Technology Pvt. Ltd.) G-1-584, RHCO Industrial Area, Sitapura, Jaipur-302022, Rajasthan	 (i) Mrs. Kavita Mathur (ii) Mr. Kedar Nath Mukhopadhyay (iii) Mr. Rajesh Maheshwari 	26.02.2018 to 25.02.2023	
41	M/s Envirochem Research & Test Labs Pvt. Ltd. HIG-79, Sector-E, Aliganj, Lucknow-226024, Uttar Pradesh	 (i) Dr. Madan Mohan Agarwal (ii) Sh. Vivek Kumar Gupta (iii) Mrs. Saroj Singh 	26.02.2018 to 25.02.2023	
45	M/s Mineral Engineering Services 25/XXV, Club Road, Bellary-583103, Karnataka	 (i) Mr. M. Sachin Raju (ii) Mr. M.R. Durga Prasad (ili) Mr. A.D. Yashwanth Arun Murthy 	26.02.2018 to 25.02.2023	
81	M/s Advanced Environmental Testing and Research Lab Pvt. Ltd. 63/1, Kailash Vihar, Near ITO, City Center-II, Gwalior-474011, Madhya Pradesh	 (i)Mr. Rajesh Jain (ii)Dr. Dinesh Kumar Uchchariya (iii) Mr. Arvind Kumar Sharma 	26.02.2018 to 25.02.2023	
86	M/s Care Labs Plot No. 1, 3 ^{nl} Floor, Sai Sadan Complex, Shiva Ganga Colony, L.B. Nagar, Hyderabad- 500074, Telangana	 (i) Mr.K. Srinivasa Rao (ii) Ms. Gouthami Gangula (iii) Ms. P. Mamatha 	26.02.2018 to 25.02.2023	
87	M/s Green Circle Inc. Green Empire, Anupushpam Habitat Centre, Nr. Yash Complex, Above Asix Bank Ltd., Gotri Main Road, Vadodara-390021, Gujarat	 (i) Mr. Pradeep Joshi (ii) Mr. Ram Raghav (iii) Ms. Shital Jashvantsinh Parmar 	26.02.2018 to 25.02.2023	
Approved	M/s Eco Laboratorics & Consultants Pvt, Ltd. E-207, Industrial Area, Phase - VIII B, Sector-74, Mohali-160071, Punjab	 (i) Mr. Sandeep Garg (ii) Ms. Simranjit Kaur (iii) Dr. Deepika Thakur 	26.02.2018 to 25.02.2023	
94	M/s Hubert Enviro Care Systems Pvt. Ltd. No. 18, 92 nd Street, Ashok Nagar, Chennai- 600083, Tamil Nadu	(i)Dr. J.R. Moses (ii)Dr. Rajkumar Samuel (iii) Mr. A.K. Nataraian	26.02.2018 to 25.02.2023	
95	M/s Nawal Analytical Laboratories Plot No. 100, New SIDCO Industrial Estate, Sri Nagar, Hosur-635109, Tamil Nadu	 (i) Mr. D.Balakrishnan (ii) Ms. S. Elamathi (iii) Mr. K.B. Krishnamoorthy 	26.02.2018 to 25.02.2023	

ISO 9001: 2015 CERTIFICATE

ISO 14001: 2015 CERTIFICATE

ISO 45001: 2018 CERTIFICATE

Acknowledgement

Acknowledgement

Eco Laboratories and Consultants Pvt. Ltd. is thankful to the Management and the Principal/Director of Baba Farid Vidyak Society for entrusting processes of Green auditing with us.

We thank all the participants of the auditing team especially students, faculty and non-teaching staff who took pain along with us to gather the data through survey.

We also thank the office staff who helped us during the document verification.

F-207 ase VIIInhali (Pb Dr. Rai Singh **Authorized Signatory** (NABET approved FAE for AQ, AP, NV & RH) Contact: +91-8054443192; Email: environment@ecoparyavaran.org

For Eco Laboratories and Consultants Pvt. Ltd.

***** End of Report *****
Energy audit

APRIL 2023

For

Baba Farid Vidyak Society

Muktsar Road (Campus), Bathinda, Punjab (India)

- Baba Farid College of Engineering and Technology
- Baba Farid College of Management and Technology
- Baba Farid College
- Baba Farid College of Education

Prepared & Submitted By

ECO PARYAVARAN LABORATORIES & CONSULTANTS PVT. LTD.

An ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018 certified Company QCI-NABET, MOEF&CC, NABL and PPCB approved Laboratory ECO Bhawan, E-207, Industrial Area, Phase VIIIB, Sector-74, Mohali-160071, (Punjab) Tel: 8872043185, Website: www.ecoparyavaran.org

ENERGY MANAGEMENT

The fundamental goal of energy management is to produce good & provide service with the least cost & least environmental effects. Energy is one of the major inputs for the economic development of any country. The fundamental goal of energy management is to produce goods & provide service with the least cost & least environmental effects.

"The strategy of adjusting & optimizing energy, using systems & procedures so as to reduce energy requirements per unit of output while holding constant or reducing total cost of producing the output from these systems"

The objective of energy management is to achieve & maintain optimum energy procurement & utilization, throughout the organization and:

To minimize energy cost / waste without affecting production & quality.

To minimize environmental effects.

ELECTRICAL ENERGY

Energy resources utilized by all the departments, support services & the administrative buildings of *"Baba Farid College"* including electricity, solar energy & liquid fuels as Diesel. Major use of energy is at office, canteen, hostel & laboratories, for lighting, cooking & workshop instruments. Electricity is supplies to the college by Punjab Electricity Board & the tariff rate is 6.63 / kwh. The communication process for awareness in relation to energy conservation is found inadequate.

- Regular monitoring of equipment's and immediate rectification of any problems.
- Conduct more save energy awareness programs for students & staff.
- Observe a power saving day every year.
- Automatic power switch off system should be introduced.
- Use of APFC panel.

ABOUT THE LOCATION

	FACILITY INFORMATION
FACALITY TYPE	COMMERCIAL / INSTITUTIONAL
TYPE	EDUCATION
PREPARED FOR	Baba Farid College Bathinda
PREPARED BY	ECO PARYAVARAN
FACILITY NAME	Baba Farid College
CITY	Bathinda
STATE	PUNJAB

CLIMATE DATA ACCORDING TO LOCTION

NASA

Source

Measured at

NASA

NASA

Site reference conditio	ns										
Climate data location	ate data location India - Punjab - Bathinda				Facility location		India				
			Unit		Climate dat	ta location	Facili	ty lo	cation	So	irce
Latitude				ſ	30	2	<u> </u>	30.3	3		
Longitude				ì	75	.0	<u> </u>	74.8	3		
Climate zone				ì		1B - Very	hot - Dry		•	N	SA
Elevation			m	•	20	1		208	1	NASA	– Map
Heating design temp	berature		°C	-î	4.	7	1			N	SA
Cooling design temp	perature		°C	•Ì	37	.7				N	SA
Earth temperature ar	mplitude		°C	-Ì	25	.5				N	SA
		_			Daily solar radiation -	Atmospheric				Heating degree-days	Cooling degree-days
Month	Air temperature	Relative humidity	Precipitation	-	horizontal	pressure	Wind speed	-	arth temperature	18 °C	10 °C
Innung	122	70	12.00	÷	xwn/m /d •	KPd *		÷	122	146	102
Sahayaay	15.5	26.5%	21.00	-	3,43	99.5	2.4		12.2	140	170
February	16.4	30.5%	21.00	-	4.56	99.1	2.0		15.7	45	1/9
March	22.0	29.0%	14.57	-	5.52	90.0	2.7		22.0	0	597
April	29.4	20.9%	10.50	-	0.15	90.5	2.0		50.5	0	770
May	35.1	17.9%	15.50	-	6,48	97.8	3,1		37.0	0	//8
June	57.0	20.0%	07.24	-	6.52	97.4	2.0		25.9	0	775
July	33.0	40.0%	00.50	-	5.65	97.4	2.5	+	24.2	0	712
August	35.0	00.076	90.00	-	5.54	97.7	2.0		34.2	0	/15
September	30.8	47.5%	61.20	-	5.51	98.1	2.5	+	31.5	0	624
October	26,4	51.0%	0.00	-	4./0	98.7	2.1	+	20.0	0	508
November	20.8	25.5%	2.40	4	3.94	99.1	2,2	+	19.7	0	324
December	15.6	30.5%	6.82		3.26	99.3	2.3		14.2	/4	174
Annual	26.3	33.7%	398.76		5.08	98.4	2.6		26.7	265	5,966

NASA

NASA

m 🔻

NASA

10

NASA

0

NASA

NASA

Graphical Representation of Solar Radiation & Wind Speed Month Wise

BENCHMARK- COMMERCIAL / INSTITUTIONAL- EDUCATION

Benchmark - Commercial/Institutio	nal - Education	Step 1 - Analysis type		
Facility size	2,1	0,437	m²	•
• Fuel consumption				

Energy use intensity		
Energy unit	kWh	•
Reference unit	m²	
Benchmark	50	kWh/m ²
Minimum (Typical)	40	kWh/m ²
Maximum (Typical)	55	kWh/m ²
Base case	50	kWh/m ²
Reference year	2022	
Set target	Target	- O
Year		
Target	-10%	-
Proposed case	45	kWh/m²
Facility - Plan	Annual	
Fuel consumption	kWh	-
Base case	1,05,21,850	
Proposed case	94,69,665	
Fuel saved	10,52,185	

GRAPHICAL REPRESENTATION OF ENERGY USE INTENSITY WITH -10% TARGET

WIND ENERGY

Operating a wind power plant is more complex than simply erecting wind turbines in a windy area. Wind power plant owners must carefully plan where to position wind turbines and must consider how fast and how often the wind blows at the site.

Good places for wind turbines are where the annual average wind speed is at least 9 miles per hour (mph)—or 4 meters per second (m/s)—for small wind turbines and 13 mph (5.8 m/s) for utility-scale turbines. Favourable sites include the tops of smooth, rounded hills; open plains and water; and mountain gaps that funnel and intensify wind. Wind speeds generally increase with increasing elevation above the earth's surface. Large wind turbines are placed on towers that range from about 500 feet to as high as 900 feet tall. From the climatic data the campus is not suitable for generation of wind energy.

PIC SHOWING THE WIND SPEED DATA IN VARIOUS STATES OF INDIA

SOLAR WATER HEATING SYSTEM

Solar water heaters -- sometimes called solar domestic hot water systems -- can be a costeffective way to generate hot water. They can be used in any climate, and the fuel they use -sunshine -- is free. There are solar water boilers in the facility. Following is the comparison of solar heater with electricity.

Calculations for solar water heating system

From the data given by the college we absorb that the facility have installed solar water boiler of capacity 12800L which is sufficient & there are no further recommendation on it. Solar boiler details are as follows

SOLAR WATER HEATING IN CAMPUS

Technical specification of 300L solar water boiler for example

Parameter		VTC 100 L	VTC 150 L	VTC 200 I	VTC 250 L	VTC 300
Angle of Stand	0			25		
Heating Element				Optional	2	
Anode provision (Ø21.3x 165mm)	No	1	ı	1	1	1
Corrosion Protection			Mg Anod	le, Dia.21	x 165mm	
Inlet with 3/4"	nos	1	1	1	1	1
Vent Pipe (Bottom)	nos	1	1	1	1	1
Outlet (Bottom Opening D47)	nos	3/4"	3/4"	3/4"	3/4"	3/4"
Base Length (L)	mm	1965	1965	1965	1965	1965
Base Width (B)	mm	812	1212	1612	2012	2412
Height (H)	mm	1150	1150	1150	1150	1150
Tank Length (A)	mm	1197	1597	2097	2647	3047
4	*					24

STREET LIGHTS & FLOOD LIGHTS

Streets lights are the important part of in energy management. It is absorbed the institution have not adopted the solar street lights or solar flood lights, which can be seen in below pic.

PIC SHOWING THE STREET LIGHT USED BY THE COLLEGE IN THE CAMPUS

CALCULATIONS FOR STRTEET LIGHTS

Total street lights used in the campus	=	18.
Wattage of individual light	=	15w
so total wattage	=	270w
Total flood lights used in the campus	=	18
Wattage of individual light	=	250w
so total wattage	=	4500w
Total wattage of all the lights	=	4770w or 5kw Approx.
One unit of electricity	=	1000 W/h
Operating hours	=	12hr
Units consumed in one day	=	60
Unit consumed in one month	=	1800

Electrical charges of one month	=	Rs.11934 (@6.63/unit)
Cost of installing 18 solar street lights 18w	=	Rs. 36000
Cost of installing 22 flood lights 200w	=	Rs. 97000
Total cost of replacement	=	Rs. 133000

So, capital cost recovery time = (133000/11934) = 1 years Approx

BENEFITS OF USING SOLAR FLOOD LIGHTS:

- Solar led flood light hanging solar spotlights outdoor powered by sunlight, turns on at dusk and off at dawn automatically, built-in 12000mAh LifePO4 battery, which lights up for continuously 15 hours. Once fully charged at night, landscape lighting in your garden.
- 200W solar flood light comes with 918SMD 5730 chipset LEDs, which provides Up to 15 hours of continuous and highly bright lighting (depends on mode). The automatic sensor switch on the solar lantern switches on at night and goes off in the morning. This feature makes it the most economical and innovative solar light outdoor.
- Using energy-saving solar flood lights outdoor, is a smart eco-choice. This led flood light can convert up to 19% of sunlight into electricity and also sustain an ample amount of battery life even under rainy weather.
- Solar flood light auto ON/OFF solar flood light for home outdoor pathway and garden use, is wireless and can be self-installed. The outdoor solar led lamp can easily be mounted on to the wall or Pole with the included screws.
- Solar rechargeable flood light for outdoor garden are incredibly durable and will survive for years due to their ABS construction and IP65 waterproof designs. The solar-led lights for outdoor use are extremely long-lasting suitable for any weather conditions and suitable for patios, lawns, garden, deck, yard, drive, fence, works well even in extreme weather conditions

ENERGY CONSUMPTION IN COLLEGE

There are two sources of electricity source in the facility

- 1. Main electricity with tariff rate of Rs. 6.63 Kw/h
- 2. Electricity from Solar
- 3. Electricity from Generators

The six-month Energy consumption of the college is shown in below table

S. No	Bill month	Rate/kwh	Total energy cost(in Rs)	Bill no
1	0ct-22	6.63	953910	1004924629
2	Nov-22	6.63	421530	1005037134
3	Dec-22	6.63	378250	1005137429
4	Jan-22	6.63	399740	1005229552
5	Feb-23	6.63	347870	1005333133
6	Feb-23	6.63	314550	1005420249

GRAPHICAL REPRESENTATION

The sample bill is shown below:

12			
۰	4/5/23	11 53 444	

49	(Regd Of	E-mail 19	Head Office 12/Branci /	, The Mall P	waala-147001,Ph	1912), CIN: U4	100PB2010	5GC033813		B	lling Category
·	Orig	inal for Rec	plent Dup	licate for Supplier, Taxable Invoice, Invoice-cum-Bill of Su			Supply		BS HT BULK SUPPLY DP		
Sub Division		Division		Circle		Bill Cycle		Bill Date		Bill N	D.
GONIANA SUB D	IVISION	CITY DIVIS BHATIN	ION	BHATINDA		03-2023		22-MAR-202	3	10054	120249
A/C No.: 3007650	580			Load	Contract	Tariff Type	Bill Status	Due Date		BILLA	maund
Consumer Name	M/S BABA F	ARID VIDYA	к	1000	Demand			CashiDalina	Innonen		moun
Address DEON G	IONIANA 15	1201-INDIA		1425.00		BS HT BULK	0	06-Apr-	03-Apr-202	3 Rs.3	14550/-
Gal No.								2023		+	
Noble No. 95XX	XXXD43			Supplie	Details of Meta	w			Meter	CT	CT No.
				Subbili	Meter Number	Make	Capacity	Digit	Status	Make	1
		1		11.00	P8849619	SECURE	5-6	8	0	19176	5
Feeder Code		Date of Nev	w Reading	Date of Old	Reading	Bill Period	Meter Security	Securit Cons	4.0	Secur	ity cons/Meter st
		21-MAR-20	23	16-FEB-202	3	33	35000	1350000			
Meter Reading										-	
Details	Old	New	Current	Meter	Line CT Ratio	Meter CT Ratio	Overall	MMTS	Old Meter	Unit C	Consumed
	Reading	Reading	Units	Multiplier			Multiplier	Correction	Cons.	0.00	01001100
KWH				1.00	50/5	5/5	10.00			+	
KVAH		1 1		1.00	60.5	6.0	10.00			+	
MDI	10.98	12.2		1.00	2013	0/0	10.00				
A) Eland Charge	10.00	14.4		1.00	190/6	5/5	10.00			122.0	3
por rices charge	18	1								_	
Contract Demand	(L) KVA	(A)	and KVA	80% of (L) #	CVA (B)	A or B whichever greater KVA (C)	Rate per KVA per month (R)	Billing Days (0)	A: For =CxR	ed Charges Am (Dx12/365
		122.00		800.00		800.00	300.00	33		26038	4.00
(B) Energy Char	ges									-	
			Units			RateAWh		Amount		B: Tota	al Energy Charg
0-100			0					0.00		-	
100-300			0					0.00		1	
300-500			0					0.00		0	
500 # AB ***			0					0.00			
101 Evel Cost As	di setara a Ci		v					0.00		<u> </u>	
(C) Fuel Cost Ad	I)ustment Cr	harges		In		*Additional Sur	rcharges			<u> </u>	
Total Energy Cha	rges	KWAH Can	sumption	Rate of	C: Amount	Unit		Rate	Amount	C: FC	A + Addi Surcha
*				FLARMAN						-	
					0.00				0.00	0	
(D) Nental Charg	ges					OST					
Meter Rent for PSPCL Meter	MCB, CT/F Rental	rt Unit	Rent for any other equipment	Total Rent		HSN Code	SGST	COST	Total GST	D: Tot	al Rent with Tao
1585	0			1585		1	142.65	142.65	285.3	1870.2	3
(E) Surcharges										-	
Voltage Surchar	ge			Demand Su	urcharge		ToD Surcha	inge			
Supply Voltage	Catered Voltage	Surcharge Rate	Voltage Surcharge	Demand in excess	Rate of Demand	Amount of Demand	Peak Hours KWAH	Rate	Amount	E: Tota	el Surcharge (R
44.00	11.00	+	- Contraction	0.00	o os	ouronange	0.00				
(D. D.)	11120			0.00	0.00	19700	0.00		0.00	0.00	
(F) Repates											
Voltage Rebates	4 ·					ToD Rebates					
Units		HT/EHT R	ebate	Amount		Non-Peak Houn	s KWAH	Rate	Amount	F: Tab	al Rebates (Rs.)
0.00		0.00		0.00		0.00		1.25	0.00	0.00	
(G) Previous Ad	justment An	nount	Notice No	and Dat	e:					-	
Units	Fixed Charges	Energy Charges	FCA	Rentals	Surcharges(+)	Rebates(-)	Taxes	Subsidy	Total	G: Nel (Rs.)	t Previous Adju
		1		1			/0		0/-100	0/-100)
	rges/Allowar	nces (Notice No.	- and Dat	e: -					-	
(H) Sundry Chai	Units	Fixed Charges	Energy Charges	FCA	Rentals	Surcharges(+)	Rebates(-)	Taxes	Subsidy	Total	H: Net Sundry Charges/Allov (Rs.)
(H) Sundry Char Late Payment Interest				10	10	/	/0	10	1	0	0
(H) Sundry Char Late Payment Interest	1	1	10						-		
(H) Sundry Char Late Payment Interest (I) Subsidy	1	1	0							-	P
(H) Sundry Char Late Payment Interest (I) Subsidy Subsidiant Kuta	-	ł	V 0	(haid)		Amount				here	P
(H) Sundry Char Late Payment Interest (I) Subsidy Subsidised KVA	1	ł	Rate for Se	ubeidy		Amount				I: Net	Subsidy (Rs.)
(H) Sundry Chai Late Payment Interest (I) Subsidy Subsidised KVA	4	ł	/ 0 Rate for Si 0.00	ubeidy		Amount 0.00				1: Net	Subsidy (Rs.)
(H) Sundry Chai Late Payment Interest (I) Subsidy Subsidiated KVA) (J) Taxation	1	1	/ 0 Rate for Se 0.00	sbeidy		Amount 0.00				I: Net	(* Subsidy (Rs.)

SOLAR ENERGY IN COLLEGE

The campus has installed solar plant of capacity nearly about 500 Kw of their own. Which can be seen in the below pic.

The total solar panels used by different departments

S.NO.	DEPARTMENT	INDIVIDUAL RATING(IN KW)	TOTAL RATING (IN KW)		
1	BLOCK-A	25	75		

INNOVATION CENTER	25	
GIRLS HOSTEL	25	
BLOCK-B	50	150
BLOCK-C	50	
BLOCK-NEW C	50	
BLOCK-F	150	
BLOCK-G		
BLOCK-H	125	125
TOTAL	500	

The above tables show the graphical representation of consumption of electrical energy and solar energy of six months & twelve months respectively. It is observed that the college have installed the solar panels and the capacities are shown below:

Image shows the Solar Energy used in Campus

From the above data it is concluded that:

Total Kw of solar energy = 500 KW

Average cost/month from

In an ideal condition, a 1kw system will generate around 3unit/day. That means a 500kw system can generate at least $500 \times 3 = 1500$ units in a day or 45000 units of energy is saved by the college per month.

It is recommended to increase the solar energy capacity by 100kw, by which the institution can be benefited as follows:

Total installation cost 100kw of solar panel	=	Rs. 45,00,000
Units of energy generated per day	=	Rs. 300

Units generated per month	=	9000
Monthly saving in INR @ Rs.6.63	=	Rs. 60,000 Approx.

So, capital cost recovery time = (45,00,000/60,000) = 75 Months

CONCLUSION

From the above data we conclude that the college have installed the solar panels of capacity 500KW. By our recommendation the college should at least increase their solar capacity by 20% which is 100KW which causes the saving of Rs. 60000 per month. The tentative cost of 100 Kw of solar plant would cost Rs. 45,00,000. This amount can be pay back in less than 75 months.

ENERGY SOURCE FROM FUEL (GENERATOR)

GENERATOR OF 500KVA CAPACITY

GENERATOR OF 250KVA CAPACITY

A diesel generator is used for emergency power supply in case of electricity shutdown or places where their power supply demand. Diesel generator generates electric energy by using a diesel engine along with an electric generator.

Nowadays, diesel generator usage is essential for industries backup, emergency, and electric systems in case of power failure. Hiring diesel generators for monitor electric current continuously and automatically start the generator when there is a power cut or power shutdown period and generator supply the power until the power comes back.

The diesel generator is the most important equipment for industries and helps to run the industries' productions continuously. The favourable growth of industries such as oil & gas industries, telecom, mining, constructions, hospitals, and retail shops.

There are mainly 2 Generator in the facility of 500KVA & 250KVA. The technical data sheet is given below:

TECHNICAL DATA SHEET

Prime Rating at rated rpm (as per ISO8528)		kVA	320 HD	380 HD	400 HD	500 HD	600 HD	625 HD	750 HD	900 HD	1010 HD
		kW	256	304	320	400	480	500	600	720	808
Genset Model			KG1- 320 WS	KG1- 380 WS	KG1- 400 WS	KG1- 500 WS	KG1- 600 WS	KG1- 625 WS	KG1- 750W S	KG1- 900W S	KG1- 1010 WS
Frequency		Hz	50	50	50	50	50	50	50	50	50
Power factor		lagging	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Voltage (with Three Phase Supply)		v	415 3Ø								
Governing class (As per ISO 8528 Part-V)			G3								
Noise level		dBA	< 75	< 75	< 75	< 75	< 75	< 75	< 75	< 75	NA
Fuel Consumption*	At 100 % Load	Ltrs/h r	69	83.3	86.9	107.5	125.9	130.5	154	197	199
	At 75 % Load		52.5	61.2	65.09	81.9	94.2	98.6	126.4	163	155
	At 50 % Load		37.6	44.1	46	57.1	63.8	66.2	89.7	120	112
Fuel tank capacity		Ltrs	850	850	850	990	990	990	990	990	990
Weight of genset with	Dry	Kg	5910	6000	6050	7200	7700	7800	8300	1360 0	1320 0
canopy (approx.)^											
Overall	Lengt h	mm	5180	5446	5650	5650	6560	6560	6800	8000	7800
dimensions of genset	Width	mm	2000	2000	2000	2000	2000	2000	2300	2300	2300
-	Height	mm	2408	2408	2408	2558	2710	2710	2713	2713	2713

Electrical Battery starting voltage	Volts- DC	24	24	24	24	24	24	24	24	24
ENGINE				1						
Engine Model		DV8T A G1	DV8T A G2	DV8T A G3	DV10 TA G1	DV12 TA G1	DV12 TA G2	DV12 ETA G11	DV16 ETA G2	DV16 ETA G1
Rated output (Prime Continuous rating as per ISO 3046)	kW	294	346	360	447	532	552	663	799	889
No. of cylinder	Numbe r	8	8	8	10	12	12	12	16	16
Cubic capacity 2	Ltrs	15.92	15.92	15.92	19.89	23.88	23.88	23.88	31.86	31.86
Bore x Stroke	mm	130x 150	130x 150	130x 150	130x 150	130x 150	130x 150	130x1 50	130x1 50	130x1 50
Rated Speed	RPM	1500	1500	1500	1500	1500	1500	1500	1500	1500
Aspiration	NA/TC /TA	ТА	ТА	ТА	ТА	ТА	ТА	ТА	ТА	ТА
Lube Oil change period	hrs	500	500	500	500	500	500	500	500	500
Lube Oil Sump Capacity	Ltrs	105	115	115	120	145	145	145	205	205
ALTERNATOR				1						
Insulation Class		Class H	Class H	Class H	Class H	Class H	Class H	Class H	Class H	Class H
Ingression Protection		IP 23	IP 23	IP 23	IP 23	IP 23	IP 23	IP 23	IP 23	IP 23
Alternator Efficiency (at 100% load) 0.8 pf**		94.3	93.3	93.4	94.6	95	95	94.6	95.3	95.1

Alternator Efficiency (at 75% load) 0.8 pf**			93.8	93.8	94	94.9	95.2	95.2	94.9	95.5	95.4
Permissible Voltage Dip at Full Load 0.8 pf Lag			< 20 %	< 20 %	< 20 %	<20 %	<20 %	< 20 %	< 20 %	< 20 %	< 20 %
Time Permitted to build up rated voltage at rated RPM			< 5 sec	c provide	ed engine	e reach tl	ne rated	speed			
Short Circuit Withstand Time		sec	3 Time s Rate d Curre nt for "3 sec"	3 Time s rated curre nt for "10 sec "							
Overload Withstand Capacity		%	10% overl oad for one hour once in 12 hours								
Prime Rating at	kVA	180	20	00	2!	50					<u> </u>
rated rpm (as per ISO8528)1	kW	144	10	60	20	00					
Genset Model		KG1- 180WS	KG1-2	200WS	KG1-1-	250WS					
Frequency	Hz	50	5	0	5	0					
Power factor	lagging	0.8	0	.8	0	.8					
Voltage	V	415 3Ø	415	5 3Ø	415	5 3Ø					

Governing class (As per ISO 8528 Part-V)			G3	G3	G3
Noise le	vel	dBA	< 75	< 75	< 75
Fuel Consump tion*	At 100 % Loa d	Ltrs/h r	41.3	45.9	56.9
At 75 % Loa d			30.9	34.4	42.6
	At 50 % Loa d		22.7	25.5	22.9
Fuel tank capacity		Ltrs	460	460	460
Weight of genset	Dry	Kg	3900	3900	4010
with canopy (approx.)	Wet	Kg	4300	4340	4320
	Len gth	mm	4300	4340	4340
Overall dimensio ns of genset^	Wid th	mm	1740	1740	1740
0	Hei ght	mm	1970	1970	1975
Electrical Battery starting voltage		Volts- DC	24	24	24
			ENGIN	1E	

Engine Model		GSL150 OTA G2	GSL1500TA G2	GSL1500TA G3
Rated output (Prime	KW	183	183	228
Continuous rating as per ISO 8528-1)	HP	248	248	310
No. of cylinder	Numbe r	6	6	6
Cubic capacity	Ltrs	8.86	8.86	8.86
Bore x Stroke	mm	118 x 135	118 x 135	118 x 135
Rated Speed	RPM	1500	1500	1500
Aspiration	NA/TC /TA	ТА	ТА	ТА
Lube Oil change period	Hrs	500	500	500
Lube Oil Sump Capacity	Ltrs	27	27	27
Coolant Capacity	Ltrs	32	29.2	31.8
		ALTERN	ATOR	
Insulation Class			Class H	
Ingression Protection			IP 23	
Alternator Efficiency (at 100% load) 0.8 pf**		93	93.5	93.6
Alternator Efficiency (at 75% load) 0.8 pf**		93.6	93.8	93.9

Permissible Voltage Dip at Full Load 0.8 pf		< 20%	< 20%	< 19%				
Time Permitted to build up rated voltage at Rated RPM		< 1 sec 1	provided engine speed	reach the rated				
Short Circuit Ratio		0.53	0.545	0.45				
Short Circuit Withstand Time	sec	3 tin	nes rated current	t for < 3sec				
Overload Withstand Capacity	%	10% overload for one hour once in 12 hours & for 150% for 30 sec						
For Intermed	iate ratin	gs, Kindly	contact nearest	KOEL office				

SERVICE RECORD

PAN NG ABXIN/02808	GEN POWERS B-1-2. BUDHA DAL SHOPPING COMPLEX. LOWER MALL/PATIALA-147001 Punjab TAX INVOICE b To c Lunit empered with complexes							7-	Creds	
GSTIN No. 03ABXPG0280F1ZW	Email:	genpoy	RN No.	l'@ gmail.com						
Invoice No. 003242		Stat	e Code	e:03		-	Dat	ed	23/0	01/2023
Details of Recipient (Billed To) Baba Farid Vidyak Society Mintser Road Plagash-151001 GSTIN	State Cod	le	De Ba Mu Bh Pu Gi	tails of Cons ba Farid Vidya kisar Road aonga ngab-151001 STIN	ignee (De k Society	liver	y at) (If	other t	tate Co	uled To)
Order No VERHAL			To	ansport						
Challan No			Ve	micle	PBUIRA782	1				
S. HSN/ Description	Prod No.	Qty	Rate	Taxable SGS Value T	SGST	GST	CGST Amt	IGST	Amt	Amount
~1 27101980 KOEL CARE Premium Genuine Oil 50 -	82.060 10.0 50		15680.00	12870.00 9:00	1158.30	9.00	1158.30			15660.02
-2" 84212300 LUB OIL FILTER	DV0.014 11.0.0		1699.00	1401.68 9.00	126.15	9.00	125.15			1699.00
3- 84212300 LUB OL FILTER - WITH KIRLOSKAR	DV0 014 27.0.0	1	1699.00	1401 68 9 00	126.15	9.00	126.15			1699.00
12K22TA ENGIN	KV2.505.02.00			1316.05 800						
-5 84213100 AIR CLEANER SAFETY ELEMINT FOR 12K22TA ENGINE	KV2.505.01.0 D	-	2206.00	3039.86 8.00	3 327.59	9.00	321 39			4412.00
6 64212303 FUEL FLITER & WATER SEPARATOR 7 38209996 KOEL CARE Genuine Coolant Premia 26 Lines Can	B2 020 35 1 25	2	4194.00	6920 10 9 6	622.81	9.00	122 81			8388.00
Totais :		10.00		35174 41	2155 42		2105 42			42832.04
				Total						420-32.10
BEGI INWARD GO	ODS		-	GST 18% On R	s 35171 4					7.000 A
Central Storelyc. 172	12 20		1 1	SGST			3	165.42		
Me_13/23 DATES	2100		1	Grand Total			3	105.42		41502.2
11 101002.40	1000			BID +/-						-0.2
Store In-charge 4	Ach			Net Amount						41502.0
Rupees: Fourty One Thousand Five Bank Details:State Bank	Hondred Ti	wo Om	ly Patinla	Arc No 650.	38033097 1	FSCO	DDE:- SB	1.0050	198	
Geods once sold will not be taken back werest @ 24% provide taken back werest @ 24% provide taken back werest @ 24% provide taken back subject to PATIAL aurostochy after po subject to PATIAL Aurostochon Es la case of mismatch in GSTR-2A please GST Payable on Reverse Charms - INO	eved within 30 ods leave our & O E a inform us w	0 days premis	es hree mi	anths from bill	ing date.		4	G.	and a	Signate

- :	or Recipient	GI B-1-2, BUDHA LOWER	EN PO	OWERS	LEX.	(172)	C.
			Pun	ijab	(
			TAX IN	VOICE			
PAN NO	SIXPLO2801		1	oc			
GSTINN	a adampeda2sof12w	E-mail: g	IRN	No			
Invoice N	003347		State C	ode:03		Dated	01/02/203
Details o	of Recipient (Billed To)			Details of Consi	gnee (Delive	ry at) (If other	than Billed T
Baba Fa	rid Vidyak Society			Baba Farid Vidyal	Society		
Muktsar Re	eval			Muktsar Road			
Partiab-15	1001			Punjab-151001			
GSTIN		State Code		GSTIN		5	State Code
Phone	014-4-2730-01-1						
Chalan N	C RISAL			Venicie 1	EN GAL METRE F T +	54 HE .	
S HSNI	Description	Prod No. C	Day Rut	e Taxable SGS Value T	SGST C Amt. GST	CGST IGST Amt %	IGST Amo
					100 00 0.00	785.00	1048
	111						
	IL inc	herge					
	Totals	herge	3 30	673- 38	755.05	126.09	1858
	Totals	herge	3 30	8731-28 Total	756 05	126.09	1858
	Totals	ODS	3.50	573+28 Total Less GST 18% On Rs Total Value	755 DS 8734 28	-26.09	1058 1016 1117 10306
	TOTAIS	ODS 2- E/3:2*	3.58	6737-28 Total Less GST 18% On Rs Total Value SGST CGST	725 25 8734 28	786.03 786.03 786.03	1858 1858 1859 10306
	TOTANS 1:.VVARD GOO S.NO. 17 DATE & 2-2-31M 10 P 0-3 2 2 76	0DS 2- 5-73-19+	3.38	873+ 28 Total Less GST 18% On Rs Total Value SGST Grand Total	705 05 8734 28	786.08 786.08 786.09	10506 1050 10506 10306
	TOTAINS 1:VARD GOO 5.NO. 17 DATE 8:223 IM 10 PS - 3. 2276	005 2 £/3:2• 55	3.55	ST31-38 Total Less GST 18% On Rs Total Value SGST Granc Total R/O +/-	785 25 8734 28	786.08 786.08 786.09	1958 1451 1551 10306 10306 10306 -0
	TOTAIS 1:+ VARD GO S.NO. 17 UATE88:2-231M 10 PB+3 A4 76	0005 2- 13:30 55	3.58	star 2# Total Less GST 18% On Rs Total Value SGST CGST Grant Total R/O +/- Net Amount	785.05 8734 28	786-08 786-08 786-09	10306 10306 10306 10306 10306 -0 10306
	TOTAINS 1:VARD GOO 5HO. 17 UATE 88:22-23 IM 10 PS - 3. 20 276 2	0DS 2 2/3:20 55 Azore	3.58	ST34 2# Total Lets Total Value SGST CG3T Grand Total R/O +/- Net Amount	*25 05 8734 28	786.08 786.09	1650 1144 1144 1144 1144 1144 1144 1144 10306 10306
Rupees:	Totals	DDS 2- E/3:20 SS Azste modred Six Only	3.59	8734-34 Total Less OST 18% On Rs Total Value SGST CGST Granc Total R/O +/- Net Amount	784.55 8734 28	786.08 786.09	1658 1652 10306 10306 -0 10306
Rupees:	Totals I: VARD GO UATER - 2-23 IM -0 PA-3 A 276 Ten Thousand Three Hu Bank Details:Seate Bank	0005 2- 13:20 SS Azste Indred Six Only th of India Branch Ch	3 36	8731-24 Totali Less GST 18% On Rs Total Value SGST CGST Granc Total R/O +/- Net Amount	*86.55 8734.28 933897 IFS CO	786.08 786.09 786.09	10306 10306 10306 10306
Rupees: 1 Goods or 2 Interest d 3 We do	Totals I: VARD GO NO. IT UATE 8-2-23 IM -> PA-3 A 4 76 -> PA-3 A 4 76 -> -> -> -> -> -> -> -> -> -> -> -> -> -	DODS 2- 55 Azste hdred Six Only th of India Branch - scieved within 30 da goods leave our pic	3 39 NIS Patiela	5735.24 Totali Less GST 18% On Rs Total Value SGST CGST Grand Total R/O +/- Net Amount	755 25 8734 28	786-08 786-09 786-09	10306 10306 10306 10306 10306 40 10306
Rupees: 1 Goods or 2 Interest (3 We do no 4 Subject 1	Totals Totals I:VARD GOO S.NO. 17 DATE 88-7-23 in P 8-3.4478 Tent Thousand Three Hu Bank Details:State Bank Details:State Bank Details:State Bank Details:State Bank	DDS 2/3120 55 Azste hidred Six Only th of India Branch of scienced within 30 de goods teare our pro-	3.39 x15 Patricla rys	Total Less DST 18th On Rs Total Value SGST Cost Cost Grand Total R/O +/- Net Amount	756 55 8734 28	786-08 786-09 786-09	10306 10306 10306 10306 10306
Rupees: 1 Goods or 2 Interest (3 We do no 4 Subject i 5 In cuse o GST Pays	Totals Totals I: VARD GOU S.HO. IT UATE 8: 2-2-3 MA -> PA3-3-A423 Tert Tridusand Three Hu Bank Details: State Bank nes sold will not be taken beck 24% b a on payments not n 8 down any responsibility after PATIALA Junsdiction (mismatch is GSTR-2A ple be on Reverse Charge: II	DDS 2- E/3190 SS Azste Adred Six Only the of India Breach	3.55 AIS Patiela Mises. In three a	8739.52 Total Less OST 18% On Rs Total Value SGST CGST Grant Total R/O +/- Net Amount Are No 650.080	755 05 8734 28 933897 IFS CC	786.08 786.03 786.04	10306 10306 10306 10306 10306 0 10306

As per the data provided by the college the total working hours of the generators in 1 month 10 days is 30 Hrs. Approx.

From technical data sheet fuel consumed by 250kva & 500kva generators

Fuel consumed by 250kva genset @ 30 % load	=	19L/hr
Fuel consumed by 500kva genset @ 30% load	=	34L/hr
Cost of Diesel in Punjab	=	Rs. 88
Fuel consumed by 250kva genset in given time	=	30 x 19 = 570 L
So, total cost of 250kva genset on given time	=	Rs. 50,160
Fuel consumed by 500kva genset in given time	=	$30 \ge 34 = 1020 $ L
So, total cost of 500kva genset on given time	=	Rs. 89760
Total costing of all the generator	=	Rs. 139920

But use of generator causes the carbon emission. The typical emission calculation is given as below:

Subscriber: Viewer

RETScreen - Emission Analysis

Base case electricity system (Baseline)							
Finites	Fuel mix	CO2 emission factor	CH₄ emission factor	N2O emission factor	Electricity generation efficiency	T&D losses	GHG emission factor
ruertype	70	kg/GJ	kg/GJ	kg/GJ	70	70	kgc02/kwn
Solar Diesel (#2 oil)	40.0%	0.0	0.0000 0.0020	0.0000	20.0% 80.0%	7.0%	0.000 0.340
Electricity mix	44	3.8	0.0001	0.0000		3.1%	0.014
Baseline changes during project life							
Base case system GHG summary (Baseline)							
Fuel type	Fuel mix %	CO2 emission factor kg/GJ	CH₄ emission factor kg/GJ	N2O emission factor kg/GJ	Fuel consumption kWh •	GHG emission factor kgCO ₂ /kWh •	GHG emission tCO2
Electricity	75.9%	3.8	0.0001	0.0000	1,28,107	0.014	1.7
Diesel (#2 oil)	24.1%	70.0	0.0020	0.0006	40,571	0.253	10.3
Total	100.0%	19.7	0.0006	0.0002	1,68,678	0.071	12.0
Proposed case system GHG summary							
Mer all	Fuel mix	CO2 emission factor	CH4 emission factor	N ₂ O emission factor	Fuel	GHG emission factor	GHG emission
Fuel type	%	kg/GJ	kg/GJ	kg/GJ	kWh	kgCO ₂ /kWh	tCO ₂
Electricity	79.9%	3.8	0.0001	0.0000	83,535	0.014	1.1
Diesel (#2 oil)	20.1%	70.0	0.0020	0.0006	21,024	0.253	5.3
Total	100.0%	17.1	0.0005	0.0001	1,04,559	0.062	6.4
5HG emission reduction summary							
Base case	tCO2	12.0		-			
Proposed case Gross annual GHG emission reduction	tCO2 tCO2	5.5					
GHG emission (100.) GHC emission (100.) C 7 P 9 6 01 71 							
Legend Gross annual GHG emission reduction (4	16%)	Proposéd Cas	*		5.5 tCO ₂ is equivalent to 1. Cars & light trucks not used	•	

From the above data we absorb that the GHG emission of generator is nearly about 10.3. And with the slight increase of the use of solar inverters the GHG emission is reduced to 5.3. And the monthly cost of fuel used is also reduced.

The calculations of solar inverter costing, capacity and the payback time is shown below:

•	Capacity of solar inverter	=	20kw
•	Cost of 5kw solar inverter	=	Rs. 50000
•	So, cost of 20kw solar inverter	=	Rs. 2,00,000
•	Reduction 20kw from generator costs	=	Rs. 2100

Payback time

Less than 6 years

=

LOAD LIST DEPARTMENT WISE

Block Wise Load Detail							
Sr. No.	Block	Equipment Name	Туре	Load (inW)	QTY	Total Load (W)	Total Load (KW)
			Centralized 51 Ton		6		67.83
			Centralized 33 Ton		6		43.89
		Ac(s)	Centralized 3.5 Ton		1		4.655
			Split		1		1.995
1	A Block		Split		1		1.064
		Wall Fan	Khitan/ Havell	40	30	1200	1.2
		Tube Lights	fluorescent/LED	40	120	4800	4.8
		Exaust Fans	Khitan	50	6	300	0.3
		Oven		200	1	200	0.2
		Water Cooler	Usha	1500	1	1500	1.5
		Fridge	LG	250	1	250	0.25
			Window 1.5 Ton		68		135.66
		Ac(s)	Split 1.5 Ton		1		1.995
			Centralized 14 Ton		2		18.62
		Fan	Havell	80	80	6400	6.4
2	B Block	Wall Fan	Khitan/ Havell	40	10	400	0.4
		Tube Lights	fluorescent/LED	40	40	1600	1.6
		Exaust Fans	Khitan	50	50	2500	2.5
		Oven		200	2	400	0.4
		Water Cooler	Usha	1500	3	4500	4.5
		Fridge	LG	250	1	250	0.25

			Window 1.5 Ton		70		139.65
		Ac(s)	Split 1.5 Ton		1		1.995
			Split 2 Ton		2		5.32
		Fan	Havell	80	177	14160	14.16
3	C Block	Wall Fan	Khitan/ Havell	40	8	320	0.32
		Tube Lights	fluorescent/LED	40	115	4600	4.6
		Exaust Fans	Khitan	50	10	500	0.5
		Oven		200	3	600	0.6
		Water Cooler	Usha	1500	2	3000	3
		Ac(s)	Window 1.5 Ton		71		141.645
		AC(S)	Split 1.5 Ton		4		7.98
	New-C Block	Fan	Havell	80	205	16400	16.4
4		Wall Fan	Khitan/ Havell	40	10	400	0.4
т		Tube Lights	fluorescent/LED	40	220	8800	8.8
		Exaust Fans	Khitan	50	23	1150	1.15
		Oven		200	1	200	0.2
		Water Cooler	Usha	1500	5	7500	7.5
			Centralized 8.5		7		79.135
			Centralized 5.5		4		29.26
		Ac(s)	Split 1.5 Ton		3		5.985
			Window 1.5 Ton		2		3.99
5	Innovation		Window 1 Ton		1		1.33
5	Center	Fan	Havell	80	30	2400	2.4
		Wall Fan	Khitan/ Havell	40	30	1200	1.2
		Tube Lights	fluorescent/LED	40	150	6000	6
		Exaust Fans	Khitan	50	2	100	0.1
		Oven		200	1	200	0.2

		Water Cooler	Usha	1500	1	1500	1.5	
			Window 1.5 Ton		32		63.84	
		AC(S)	Split 1.5 Ton		1		1.995	
		Fan	Havell	80	167	13360	13.36	
C	D Black	Wall Fan	Khitan/ Havell	40	15	600	0.6	
O	D BIOCK	Tube Lights	fluorescent/LED	40	114	4560	4.56	
		Exaust Fans	Khitan	50	8	400	0.4	
		Oven		200	1	200	0.2	
		Water Cooler	Usha	1500	2	3000	3	
		Ac(s)	Window 1.5 Ton		55		109.725	
		Fan	Havell	80	202	16160	16.16	
	E Block	Wall Fan	Khitan/ Havell	40	35	1400	1.4	
7		Tube Lights	fluorescent/LED	40	158	6320	6.32	
		Exaust Fans	Khitan	50	10	500	0.5	
		Oven		200	4	800	0.8	
		Water Cooler	Usha	1500	4	6000	6	
				Window 1.5 Ton		96		191.52
			AC(S)	Split 1.5 Ton		1		1.995
		Fan	Havell	80	213	17040	17.04	
Q	F Block	Wall Fan	Khitan/ Havell	40	10	400	0.4	
o	r block	Tube Lights	fluorescent/LED	40	136	5440	5.44	
		Exaust Fans	Khitan	50	14	700	0.7	
		Oven		200	3	600	0.6	
		Water Cooler	Usha	1500	4	6000	6	
		Ac(s)	Window 1.5 Ton		70		139.65	
9	G Block		Split 1.5 Ton		2		3.99	
		Fan	Havell	80	230	18400	18.4	

		Wall Fan	Khitan/ Havell	40	12	480	0.48
		Tube Lights	fluorescent/LED	40	285	11400	11.4
		Exaust Fans	Khitan	50	6	300	0.3
		Oven		200	4	800	0.8
		Water Cooler	Usha	1500	3	4500	4.5
		Ac(s)		1.995	112	223.44	0.22344
		Fan	Havell	80	340	27200	27.2
		Wall Fan	Khitan/ Havell	40	15	600	0.6
10	H Block	Tube Lights	fluorescent/LED	40	233	9320	9.32
		Exaust Fans	Khitan	50	17	850	0.85
		Oven		200	3	600	0.6
		Water Cooler	Usha	1500	7	10500	10.5
		Ac(s)	Window 1.5 Ton		2		3.99
	Main Gate	Fan	Havell	80	5	400	0.4
		Wall Fan	Khitan/ Havell	40	2	80	0.08
11		Tube Lights	fluorescent/LED	40	7	280	0.28
		Exaust Fans	Khitan	50	3	150	0.15
		Oven		200	1	200	0.2
		Water Cooler	Usha	1500	1	1500	1.5
		Ac(s)		0	0	0	0
		Fan	Havell	80	41	3280	3.28
		Wall Fan	Khitan/ Havell	40	0	0	0
12	Workshop	Tube Lights	fluorescent/LED	40	25	1000	1
		Exaust Fans	Khitan	50	9	450	0.45
		Oven		200	1	200	0.2
		Water Cooler	Usha	1500	1	1500	1.5
13		Ac(s)	Window 1 Ton		77		102.41

			Split 1.5 Ton		1		1.995
		Fan	Havell	80	100	8000	8
		Wall Fan	Khitan/ Havell	40	2	80	0.08
		Tube Lights	fluorescent/LED	40	350	14000	14
	Boys Hostel	Exaust Fans	Khitan	50	5	250	0.25
		Oven		200	0	0	0
		Water Cooler	Usha	1500	3	4500	4.5
		Solar Gysar	2000 ltr		3		
			500 ltr		3		72
		Ac(s)	Window 1 Ton		68		90.44
			Split 0.8 Ton		1		0.8
	Girls Hostel	Fan	Havell	80	150	12000	12
		Wall Fan	Khitan/ Havell	40	2	80	0.08
		Tube Lights	fluorescent/LED	40	320	12800	12.8
14		Exaust Fans	Khitan	50	8	400	0.4
14		Oven		200	0	0	0
		Water Cooler	Usha	1500	3	4500	4.5
		Soalr Gysar	2000 ltr		1		
			200 ltr		9		
			500 ltr		3	72 KW	72
		Fridge	LG	250	1	250	0.25
		Ac(s)	Castable 8.5 Ton		2		22.61
			Centralized 5.5 Ton		1		7.315
15	Main Seminar		Centralized 2 Ton		2		5.32
	Hall		Window 1.5 Ton		4		7.98
		Fan		0	0	0	0
		Wall Fan	Khitan/ Havell	40	6	240	0.24

		Tube Lights	fluorescent/LED	40	25	1000	1
		Exaust Fans	Khitan	50	2	100	0.1
		Water Cooler	Usha	1500	1	1500	1.5
		Motors	3 HP	2358	3	7074	7.074
			5 HP	3930	2	7860	7.86
16	STP		1.5 HP	1179	2	2358	2.358
		Tube Lights		40	3	120	0.12
		Fan		80	1	80	0.08
		Pump	5.5 HP	4323	2	8646	8.646
		Motors	1.5 HP	1179	2	2358	2.358
17	RO		2 HP	1572	1	1572	1.572
		FAN		80	2	160	0.16
		Tube Lights		40	3	120	0.12
		Motors - 3 PHASE	Monoblack 10HP	7860	1	7860	7.86
	Dhobhi Ghat		Monoblack 7.5 HP	5895	1	5895	5.895
10			Samercible 7.5 HP	5895	3	17685	17.685
10			Samercible 2 HP	1572	2	3144	3.144
		Motors - Single Phase	Samercible 2 HP	1572	2	3144	3.144
			Monoblack 1.5 HP	1179	1	1179	1.179
		Ac(s)	Window 1 Ton		1		1.33
		Fan		80	4	320	0.32
10	Center	Wall Fan		50	2	100	0.1
19	Store	Tube Lights		40	10	400	0.4
		Exaust Fans		100	1	100	0.1
		Oven		200	1	200	0.2
Total Load in KW							

PHOTOS OF LAB EQUIPMENTS

From above load list, the observation is given below

Total no	of CFL use	d in campus		
	SI.no	Wattage	Qty.	
	1	20	340	
	2			

And total no of florescent tube used

SI.no	Wattage	Qty.
1	40	1500

PHOTOS OF LIGHTS USED IN CAMPUS

Efficiency

If we talk about efficiency CFLs & LEDs are both significantly energy efficient. As for comparison the CFLS are 25% more efficient than incandescent light bulb & LEDs are roughly 75% more efficient.

LIFESPAN

The lifespan of LEDs is much longer than CFLs. As the

Average lifespan of CFLs is 10,000 Hrs.

Average lifespan of LEDs is 25,000 Hrs.

Hence from above we can calculate that the LEDs are almost 40% more efficient than CFLs.

LUMENS

The luminance of CFLs is 60 Lu/w. While the luminance of LEDs 80 Lu/w.

This means that around 10w of power, an LED will be just bright as a 14w of CFLs

CONCLUSION

From the above data we conclude that if we replace the CFL with the LED lights much electricity would be saved and the calculation is given below:

Total no. 20 watt CFLs used = 340

Lumen per watt of CFL = 60 Lu/w

So, Total Lumen of 20w CFL is = 1200 Lu

This luminance can be achieved by 14w of LED

So, 340 number of 20w CFL will consume almost 6800w & same amount of 14w LED will consume 4760w. Which is about 2040w less

Now talking about the Fluorescent tube lights.

Luminance of Fluorescent tube light	= 70 Lu/w
Luminance of LED tube light	= 140Lu/w
Total no. 40 w Fluorescent tube light used	= 1500
Lumen per watt of Fluorescent tube light	= 70 Lu/w
So, Total Lumen of 40w Fluorescent tube light	= 2800 Lu

This luminance can be achieved by 18w of LED tube light

So, 1500 number of 40w Fluorescent tube light will consume almost 60000w & same amount of 18w LED tube light will consume 27000w. Which is about 33000w less

Hence, we can save up to 35040 watts OR 35KW of energy.

COSTING AND PAYBACK TIME FOR REPLACING CFL WITH LED					
Cost of 14w LED light	= Rs. 200/p				
Cost of 340 14w LED light	=Rs. 43225				
Total cost of replacing all the CFLs	= Rs.68000				
Average use of lights per year	= 270 x 7 h = 1890hr				
From above value approx. 2kw of energy is saved	1				
Hence, total energy saved per year	$= 2 \times 1890 = 3780$ kwh				
Saving in Rupees/year 3780 x 6.63	= Rs.25061				
So, capital cost recovery time = $(43225/25061) = 1.8$ YEARS Approx					

COSTING AND PAYBACK TIME FOR REPLACING FLUORESCENT TUBE LIGHT WITH LED TUBE LIGHT

Cost of 18w LED tube light		= Rs.530/p		
Cost of 1500 18w LED tube light		=Rs.795000		
Average use of lights per year		= 270 x 7 h = 1890hr		
From above value approx. 33kw	of energy is save	d		
Hence, total energy saved per year $= 33 \times 1890 = 62370$ kwh				
Saving in Rupees/year	= 62370 x 6.63	= Rs.413513		

So, capital cost recovery time = (795000/413513) = 1.7 YEASRS Months Approx. by replacing the fluorescent tube light with LED tube light

Use of master switch outside each room

Installation of a master switch outside a room can make it easy for a person to switch off all the appliances of a room in case someone forgets to switch off while leaving the room. This can help improving energy efficiency.

Use of motion sensors in toilets

Toilets have large potential of saving energy by use of automation tools. Motion sensors can be used there to automatically switch on the light when there is any movement and switch off the light Then there is no movement. This can greatly reduce the total load in toilets, each toilet has 4 tube light in average. There will be 2sensors required in a toilet.

Cost analysis of Installing Motion Sensors in a Typical Toilets:

•	Approximate total no of toilets in campus	=30
•	Approximate total no of light in toilets	= 112
•	Average power of the tube light	=18 w
•	Average no of motion sensor required	=28

• Average reduction of usage per day by motion sensor =4hr

Total energy saved in toilets per year:

٠	Total energy consumes by toilets	=18X112=2kwh
•	Energy consumed in normal condition per day	=2X7=14Kwh
•	Energy saved by motion sensor per day	=2X4=8kwh
•	Hence, energy saved by motion sensor per year	=8X270=2160kwh
•	Total amount saved per year	= Rs 14000 approx.
•	Cost of installation per motion sensor	= Rs 500
•	Total cost of installing motion sensor in toilets	= 500x30=Rs15000
•	Capital cost recovery time	= 15000/14000 = 1 Yr

Hence the capital cost recovery time for installing motion sensor in toilets is 1 years. Hence, this is a highly recommended step to largely reduce the consumption in toilets.

High investment/Long Term Replacement

Energy substitution (electrical energy to solar energy)

As we know in campus there is a huge consumption of electrical energy which is not economical so instead of using electrical energy, we switch to alternate energy source which is solar energy.

Understanding Power Factor and How It Affects Electricity Bills

Aside from safety and reliability, several other goals including efficiency should be pursued in the design and implementation of electrical systems. One of the measures of efficiency in an electrical system is the efficiency with which the system transforms the energy it receives into useful work.

This efficiency is indicated by a component of electrical systems known as the Power Factor. The **power factor indicates how much power is actually being used to perform useful work** by a load and how much power it is "wasting". As trivial as its name sounds, it is one of the major factors behind high electricity bills, power failures and sometimes the imbalance in electrical networks.

To be able to properly describe power factor and its practical significance, it is important to refresh your memory about the different types of electrical loads and components of Power that exist.

From basic electricity classes, electrical loads are basically of two types;

- 1. Resistive Loads
- 2. Reactive Loads

Resistive Loads

Resistive loads, as the name implies, are loads are made up of **purely resistive elements**. For this kind of loads (considering ideal conditions), all the power supplied to it are dissipated for useful work due to the fact that the **current is usually in phase with the voltage**. A good example of resistive loads includes incandescent light bulbs and batteries.

Resistive Circuit

Relationship between current and voltage for a Resistive Load

For this kind of loads, a power component known as Real/Active/working Power is associated. We will take a closer look at it in a bit.

Reactive loads

Reactive loads, on the other hand, are a little bit more complex. While they cause a drop in voltage and draw current from the source like resistive loads, they dissipate no useful power (no work was done).

Reactive loads can either be capacitive or Inductive. In inductive loads, the power drawn is used up in setting up magnetic flux without any direct work performed, while for capacitive loads, the power is used in charging the capacitor and not directly producing work. The power thus dissipated in reactive loads is referred to as **Reactive power**. Reactive loads are characterized by **the current leading (Capacitive loads) or lagging (Inductive loads) behind the voltage**, as such, a phase difference usually exists between the current and the voltage.

Relationship between Voltage and Current for an Inductive Load

The variations in these two types of load brought about the existence of three power components in electrical systems, namely;

- 1. Actual Power
- 2. Reactive Power
- 3. Apparent Power

To pick them one after the other;

Actual Power

This is the power associated with resistive loads. It is the power component dissipated to the performance of actual work in electrical systems. From heating to lighting, etc., It is expressed in **Watts (W)** (along with its multipliers, kilo, Mega, etc.) and symbolically represented by the letter P.

Reactive Power

This is the power associated with reactive loads. As a result of the delay between voltage and current in reactive loads (either capacitive or inductive), the energy dissipated, produces no work. It is referred to as reactive power and its unit is **Volt-Ampere Reactive (VAR)**.

Apparent Power

Typical electrical systems comprise of both resistive and inductive loads, think about your light bulbs and heaters for resistive loads, and equipment with motors, compressors, etc. as inductive loads. Thus in an electrical system, **Total Power is a combination of the actual and reactive power components**, this total power is called the Apparent Power as given by the sum of the Actual power and reactive power. Its unit is **volt-amps (VA)** and represented mathematically by the equation;

Apparent Power = Actual Power + Reactive power

This combination leading to the apparent power is what brings about the **power factor**.

In Ideal situations, the actual power dissipated in an electrical system is usually greater than the reactive power. The image below shows the **vector diagram** drawn using the three Power components.

Vector Diagram

Transforming the vector diagram, we get the triangle below; none as the power triangle.

By obtaining the cosine of the angle theta, we are able to decipher the efficiency of the system in using the power it receives for work. This efficiency evaluated as the ratio of the actual power to the apparent power is referred to as the **power factor** with values between 0 and 1. From the power triangle, according to the cosine rule (Adjacent over hypotenuse), the power factor can also be estimated as the ratio of actual power to the apparent power. mathematically;

P.F. = Actual Power / Apparent Power or P.F. = $\cos \theta$

Putting this side by side with the equation for determining apparent power, it's easy to see that an increase in reactive power (presence of a high number of reactive loads), leads to an increase in apparent power and a larger value for angle theta, which ultimately results in a low power factor when its cosine (cos) is obtained. On the flip side, a reduction in reactive loads (reactive power) leads to an increased power factor, indicating high efficiency in systems with less reactive loads.

Importance of Power Factor

At very low power factor values, a large quantity of energy from the mains is wasted as a chunk of it will not be used for meaningful work due to the presence of more reactive loads indicated by the low power factor. This place a strain on the supply system as both the real power required by the load and the reactive power used to satisfy reactive loads will be drawn from the system to meet the requirements of the load.

This strain and "wastage" typically leads to huge electricity bills for consumers (especially industrial consumers) as utility companies calculate consumption in terms of apparent power, as such, they end up paying for power which was not used to achieve any "meaningful" work.

Even in situations where the power is being provided by the company's generators, money is wasted on bigger generators, larger sized cables, etc., required to provide power when a good number of it is just going to waste.

Power factor surcharge according to "Punjab State Electricity Regulatory Commission (P.S.E.R.C)"

According to para SXI.6 Power Factor Surcharge/Incentive

Consumers shall be required to maintain a monthly average power factor of 0.90. The monthly average power factor shall mean the ratio of total kWh to total kVAh supplied during the month. The ratio shall be rounded up to two decimal points.

According to para SXI. 6.1 Low Power Factor Surcharge

If the monthly average power factor falls below 0.90, the consumer shall pay on the energy charges a surcharge of 1% for each 0.01 decrease in the monthly average power factor below 0.90. The surcharge shall be 2% for each 0.01 decrease of monthly average power factor below 0.80.

According to para SXI. 6.2 Power Factor Incentive

If the monthly average power factor exceeds 0.90, incentive @ 0.25%, for each increase of 0.01 above 0.90 shall be allowed on the energy charges.

HOW TO SOLVE THIS PROBLEM?

To solve the above problem, we have to improve the power factor by installing the APFC panel which can maintain the power factor above 0.9 and helps in generating the power factor incentive, which causes the reduction in bill.

THE COLLEGE HAVE ALREADY INSTALLED APFC Panels Capacity – 550 KVR

THE APFC PANEL PICS ARE SHOWN BELOW

Let us take an example

Let the bill amount	=	Rs. 20000
From load list avg. PF	=	0.75
Desired power factor	=	0.9
For 0.9 to 0.8 % cap. Charge	=	$10 \ge 1\% = 10\%$
For 0.8 to 0.75 % cap. Charge	=	5 x 2% = 10%
So, total cap. Charge would be	=	10+10% = 20%

If power factor is 0.9 then reduction in bill would be

20% of total bill amount	=	1600	0
So reduced bill amount	=	3319	80-265584= Rs. 4000
After using the APFC panel the average p	ower fa	actor w	ill be 0.97.
So, total hike in power factor		=	7%

According to para SXI. 6.2 Power Factor Incentive will be 0.25% for increase of 0.01

So, 7% of Rs. 16000 rebate will be	= Rs. 1400
Total bill amount	=Rs. 14600
Total saving after installing APFC panel	= Rs. 6000
Cost of installing APFC panel	= Rs. 32000 approx.

So, the payback time will approximately 6 months by using the APFC panel.

CONCLUSION AND RECOMMENDATIONS

- As per the climatic data of the location it is seen that the annual solar radiation of the area is 4.68 kw/m²/d, which is very good reading for solar power harvesting and by following this we can see that the energy benchmarks of the campus is 50kwh/m² and if only 10% of total kwh/m² is reduced i.e. 45kwh/m² the 1052185 KWh of energy is saved in one year.
- There are mainly 2 generators in the campus of different ratings which is shown in table-A above and also the carbon emission due to generator calculations are given above. According to our recommendations only by reducing the 20kw of power produced by generator with Solar inverters the GHG emission is reduced from 10.3 to 5.3. and the replacement of solar inverters would cost Rs. 2,00,000, which would be recovered back in 6 years.
- The department vise electrical load list of is given above and from the load list most of the lights source used by the campus is CFL's & fluorescent tube lights. According to our suggestion these lights should be replaced with LED & LED tube lights which can plays the major role in saving the electricity which can be seen in above calculations. And it is observed that the replacement cost is Rs. 838225, which can be recovered in 2 years.
- The final suggestion is the use of motion sensors in toilets which can save up to 2160kw of energy per year i.e. Rs. 14000 per year. Cost of installation of sensors is Rs. 15000 which can be recovered in 1 year

About Eco Group (Consultant)

ABOUT ECO GROUP

Eco Group is North India's reputed environmental organization Headquartered in Mohali (Chandigarh) that offers consultancy and environmental-related turnkey solutions for overall pollution abatement and sustainable development. We are a professional engineering firm with National level consultancy approved by QCI/ NABET and Environmental and Mechanical testing laboratory approved by MoEF&CC, NABL (ISO/IEC 17025:2017) and state boards.

Eco Group, established in 1998 has designed, engineered and executed more than 1,000 installations of Water, Domestic Sewage and Industrial Effluent Treatment Plants. With the help of our state-of-the-art technologies and apt infrastructure, we are proud to maintain an impeccable quality record, owing to our customer satisfaction levels. These treatment plants operate with the help of trained staff, including Sewage Treatment Plants (STPs), Effluent Treatment Plants (ETPs), Reverse Osmosis Plants (ROs), etc. In the last 20 years, we have undertaken several projects successfully and have created sustainable solutions to environmental issues.

Eco Group has two major business divisions as Eco Paryavaran Engineers & Consultants Pvt. Ltd. and Eco Paryavaran Laboratories & Consultants Pvt. Ltd. The former caters to consultancy and providing engineering solutions for environmental pollution whereas the latter pertains to the analytical and consultancy services in the field of lab testing and environmental studies. Eco Paryavaran is North India's leading supplier of pollution control equipment with world-class infrastructure.

Eco Paryavaran Laboratories is NABL (National Accreditation Board for Testing and Calibration Laboratories) accredited for ISO/IEC 17025:2017, approved by Ministry of Environment, Forest and Climate Change (MoEF&CC) & State Pollution Control Board (SPCBs) in the field of air, noise, wastes, water/wastewater and microbiological testing. Eco Paryavaran Laboratories & Consultants Pvt. Ltd. is also Government approved (ISO 9001:2015, ISO 14001:2015 and ISO 45001:2018) and National Accreditation Board for Education and Training (NABET).

Team of Experts for the Study

S. No	Name of Expert	Role of Expert	ID of Expert
1.	Dr. Sandeep Garg (Ph. D. & ME in Env. Sc., BE in Civil)	 Managing Director NABL approved authorized signatory MoEF&CC approved govt. analyst NABET approved EIA Coordinator & Functional Area Expert Chairman IWE & Ex-Advisor, GMADA 	
2.	Dr. Rai Singh (Ph. D. & M. Sc. Env. Sc. P.G. Diploma in Industrial Safety, Health & Env.)	 Dy. General Manager (Technical & Environment) MoEF&CC approved Govt. Analyst; NABL approved authorized signatory NABET approved Environmental Expert Worked in CPCB (2001-12) as Research Scientist 	
4.	Dr. Simranjit Kaur (M.Sc. & M.Phill.; Ph.D. in Solid Waste Management)	 Deputy General Manager – EMS & Biological Lab Quality Manager – Analytical Division NABL Technical Assessor, NABL approved authorized signatory MoEF&CC approved govt. analyst NABET approved EIA Coordinator & Functional Area Expert 	
5.	Dr. Ajay Kumar	Chief Technical Officer Quality Manager • NABL approved authorized signatory	0
6.	Mr. Navjyot Singh (BE Electrical & specialization in MEP)	Manager (Projects)	
7.	Mr. Umesh Kumar (M. Tech – Nanotech)	Technical Manager & Sr. Laboratory Analyst (Environment & Chemical) • NABL approved authorized signatory	1

Approvals of Eco Paryavaran Laboratory

Approvals of Eco Laboratory

NABET ACCREDITATION CERTIFICATE

a J	Education & Training Certificate of Accreditat	ion	MAD	-1
a J	Education & Training Certificate of Accreditat	ion		-9
J	Certificate of Accreditat	ion		
0			_	
	Eco Laboratories and Consultants Pvt Ltd, N	1ohali		
he a irgan	E 207, Phase VIII B, Sector 74, Industrial Area, SAS Na rganization is accredited as Category-A under the QCI-NABET Scheme for Ization, Version 3: for preparing EIA-EMP reports in the following Sectors –	gar, Moha Accreditati	ll on of EIA Co	nsulta
s,	Sector Description	Sector	(as per)	Cat
No	Sector Description	NABET	MoEFCC	Car
1	Mining of minerals- opencast only	1	1 (b)	A
2	Metallurgical industries	8	3 (a)	B
3	Cement plants	9	3 (b)	A
4	Synthetic organic chemicals industry (dyes & dye intermediates; bulk drugs and intermediates excluding drug formulations; synthetic rubbers; basic organic chemicals, other synthetic organic chemicals and chemical intermediates)	21	5 (f)	A
5	Distilleries	22	5 (g)	A
6	Sugar Industry	25	5 (i)	В
7	Industrial estates/ parks/ complexes/ Areas, export processing zones (EPZs), Special economic zones (SEZs), Biotech parks, Leather complexes	31	7 (c)	A
_	Common Effluent Treatment Plants (CETPs)	36	7 (h)	В
8	Building and construction projects	38	8 (a)	B
8		39	8 (b)	В
8 9 10	Townships and Area development projects	entioned in	NA AC MINUS	25 00
8 9 10 lote: uly 0 he Ac efore	Townships and Area development projects Names of approved EIA Coordinators and Functional Area Experts are m 2, 2021 posted on QCI-NABET website. creditation shall remain in face subject to continued campliance to the terms and of accreditation bearing no. QO/NABET/ENV/ACO/2 1/1936 dated Sept 10, 2021. T the expiry date by Eco Laboratories and Consultants Pvt Ltd, Mahali following due	entioned in conditions m he accreditat process of ce	entioned in QC ion needs to be sessment.	D-No e rei
8 9 10 lote: uly 0 the Ac ther c efore 5r.	Townships and Area development projects Names of approved EIA Coordinators and Functional Area Experts are m 2, 2021 posted on QCI-NABET website. creditation shall remain in face subject to continued compliance to the terms and of accreditation bearing no. QO/NABET/ENV/ACO/2 1/1936 dated Sept 10, 2021. T the expiry date by Eco Laboratories and Consultants Pvt Ltd, Mahali following due QCV-4 Director, NABET Certificate No.	entioned in conditions m he accreditat process of a	entioned in QC ion needs to bo sessment. Valid u	pto

NABL ACCREDITATION CERTIFICATE

Racines.		ational Accreditatio sting and Calibrati	on Board for ion Laboratories	57
	CERTIFICA	TE OF ACCRED	ITATION	
ECO LAB	ORATORI	ES AND CONS	ULTANTS P	VT. LTD.
has b	een assessed an	nd accredited in accord	ance with the stand	ard
	IS	SO/IEC 17025:2	017	
"General	Requirem	ents for the Con bration Laborat	npetence of T tories"	esting &
	13%	for its facilities at	1810	
ECO GROUP, ECO BE	IAWAN, E-207, IN	DUSTRIAL AREA, PHASE INDIA	VIII-B, (SECTOR 74),	MOHALI, PUNJAB,
	25	in the field of	7131 23	
	2 al	TESTING	A A	
Certificate Number:	TC-7477		1/8/3/1	
Issue Date:	01/06/2021		Valid Until:	31/05/2023
This certificate remains a tis factor (To see the set) Name of Legal Identity	ins valid for the Sc ry compliance to th mpe of accreditation o : ECO LABORA Signe	cope of Accreditation as sp he above standard & the r of this laboratory, you may also y TORIES AND CONSULTA ed for and on behalf o	ecified in the annexure elevant requirements of fait NABL website www.nab NTS PVT. LTD. I NABL Meletan V. Venkateswaran ief Executive Officer	subject to continued (NABL Hindlaorg)

MOEF&CC ACCREDITATION CERTIFICATE

रजिस्ट्री से॰ डी॰ एल=-33004/99

REGD, NO. D. L.-33004/99

असम्बद्धारण

EXTRAORDINARY

भाग 11-खण्ड 3-डप-खण्ड (ii) PART II-Section 3-Sub-section (ii)

ART II-Section 3-Sub-section

प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

र्स, 258]	नई दिल्ली, बुधवार, फरवरी 28, 2018/फाल्गुन 9, 1939
No. 758]	NEW DELHI, WEDNESDAY, FEBRUARY 28, 2018/PHALGUNA 9, 1939

पर्यावरण, बन और जसवायु परिवर्तन मंत्रालय

मति सुचना

नई दिली, 26 फरबरी, 2018

NOTIFICATION

New Delhi, the 26th February, 2018

S.O. 857(E).—In exercise of the powers conferred by clause (b) of sub-section (1) of section 12 and section 13 of the Environment (Protection) Act, 1986 (29 of 1986), read with rule 10 of the Environment (Protection) Rules, 1986, the Central Government hereby makes the following further amendments in the notification of the Government of India in the erstwhile Ministry of Environment and Forests, number S.O. 1174(E), dated the 18th July, 2007, namely: -

In the Table appended to the said notification, -

(i) for serial numbers 1,17,24,26,30,39,41,45,81,86,87,93,94,95,96 and 100 the entries relating thereto, the following serial numbers and entries shall be substituted, namely: -

S.No.	Name of the Laboratory	Name of the Govt. Analyst	Recognition with effect from and valid up to
(1)	(2)	(3)	(4)
71	M/s Mantee Consultants Pvt. Ltd. D-36, Sector-VI, Noida-201301, Uttar Pradesh	 (i) Mr. Gaja Nand Mallick (ii) Dr. Vivek Dwivedi (iii) Mr. Sumit Verma 	26.02.2018 to 25.02.2023
17	M/s Idma Laboratories Limited	(i) Mr. Ankush Aggarwal	26.02.2018

[भाग ॥	-खण्ड ३(ii)] भारत का राजपत्र	: असाधारण	5
	391, Industrial Area, Phase-1, Paunchkula- 160019,Haryana	(ii)Mr. Niranjan Dev Behl (iii) Dr. Rajendra Kumar Jain	to 25.02.2023
24	M/s Newcon Consultants & Laboratories Pvt. Ltd. 8 th K.M. Stone, Delhi Meenat Road, Morta (Opp. Manan Dham Mandir), Ghaziabad- 201003, Uttar Pradesh	 (i) Mr. Pankaj Gupta (ii) Mr. Amit Kumar Singh (iii) Mr. Intekhab Khan 	26.02.2018 to 25.02.2023
26	M/s Klean Laboratories & Research Pvt. Ltd. 402, Purushottam Plaza, Opp. Baner Telephone Exchange,Baner Road, Pune- 411045, Maharashtra	 Mr. Vishwas Waman Kale Mr. Sanjay Kamalakar Mardikar Ms. Manjusha Gaikwad 	26.02.2018 to 25.02.2023
30	M/s Lawn Enviro Associates, "Lawn House" #184-C, Vengalrao Nagar, Hyderabad- 500038, Telangana	 (i) Mr. Devireddy Nagarujuna Reddy (ii) Ms. Chevula Anuradha (iii) Ms.Vangani Pallavi 	26.02.2018 to 25.02.2023
39	M/s Team Test House. (A Unit of Team Institute of Science & Technology Pvt. Ltd.) G-1-584, RIICO Industrial Area, Sitapura, Jaipur-302022, Rajasthan	 (i) Mrs. Kavita Mathur (ii) Mr. Kedar Nath Mukhopadhyay (iii) Mr.Rajesh Maheshwari 	26.02.2018 to 25.02.2023
41	M/s Envirochem Research & Test Labs Pvt. Ltd. HIG-79, Sector-E, Aliganj, Lucknow-226024, Uttar Pradesh	(i) Dr. Madan Mohan Agarwal(ii) Sh. Vivek Kumar Gupta(iii) Mrs. Saroj Singh	26.02.2018 to 25.02.2023
45	M/s Mineral Engineering Services 25/XXV, Club Road, Bellary-583103, Karnataka	 (i) Mr. M. Sachin Raju (ii) Mr. M.R. Durga Prasad (ili) Mr. A.D. Yashwanth Arun Murthy 	26.02.2018 to 25.02.2023
81	M/s Advanced Environmental Testing and Research Lab Pvt. Ltd. 63/1, Kailash Vihar, Near ITO, City Center-II, Gwalior-474011, Madhya Pradesh	 (i)Mr. Rajesh Jain (ii)Dr. Dinesh Kumar Uchchariya (iii) Mr. Arvind Kumar Sharma 	26.02.2018 to 25.02.2023
86	M/s Care Labs Plot No. 1, 3 ^{nl} Floor, Sai Sadan Complex, Shiva Ganga Colony, L.B. Nagar, Hyderabad- 500074, Telangana	 Mr.K. Srinivasa Rao Ms. Gouthami Gangula Ms. P. Mamatha 	26.02.2018 to 25.02.2023
87	M/s Green Circle Inc. Green Empire, Anupushpam Habitat Centre, Nr. Yash Complex, Above Asix Bank Ltd., Gotri Main Road, Vadodara-390021, Gujarat	 (i) Mr. Pradcep Joshi (ii) Mr. Ram Raghav (iii) Ms. Shital Jashvantsinh Parmar 	26.02.2018 to 25.02.2023
93	M/s Eco Laboratories & Consultants Pvt. Ltd.	(i) Mr. Sandeep Garg	26.02.2018
Approved	E-207, Industrial Area, Phase- VIII B, Sector-74, Mohali-160071, Pamiah	(ii) Ms. Simranjit Kaur (iii) Dr. Deepika Thakur	25022023
94	M/s Hubert Enviro Care Systems Pvt. Ltd. No. 18, 92 nd Street, Ashok Nagar, Chennai- 600083, Tamil Nadu	(i)Dr. J.R. Moses (ii)Dr. Rajkumar Samuel (iii) Mr. A.K. Natarajan	26.02.2018 to 25.02.2023
95	M/s Nawal Analytical Laboratories Plot No. 100, New SIDCO Industrial Estate, Sri Nagar, Hosur-635109, Tamil Nadu	 Mr. D.Balakrishnan Ms. S. Elamathi Mr. K.B. Krishnamoorthy 	26.02.2018 to 25.02.2023

ISO 9001: 2015 Certificate

ISO 14001: 2015 Certificate

ISO 45001: 2018 Certificate

Certificate egistration This is to Certify that Occupational Health & Safety Management System of ECO PARYAVARAN LABORATORIES & CONSULTANTS PRIVATE LIMITED E-207, INDUSTRIAL AREA, PHASE VIII B (SECTOR-74), MOHALI-160071, PUNJAB, INDIA. has been assessed and found to conform to the requirements of **ISO 45001:2018** for the following scope : TESTING SERVICES IN BIOLOGICAL, CHEMICAL AND MECHANICAL CATEGORIES & EIA CONSULTANTS FOR PREPARING EIA/EMP REPORTS. 22IOJA85 Certificate No : 21/04/2022 Initial Registration Date Issuance Date : 21/04/2022 Date of Expiry 20/04/2025 1st Surve. Due 21/03/2023 2nd Surve. Due : 21/03/2024 Director ACCREDITED ent Systems Certification Body MSCB-119 ON ADR AQC MIDDLE EAST LLC Head Office: Office No. 02, Ground Floor, Sharjah Media City, Sharjah, UAE. e-mail: info@aqcoorld.com, Key Location: A-60, Sector - 2, Noida, Uttar Pradesh, 201301, India. Wildsting of the Configure is subject to successful completion of surveillance and/c on or before of the date. (in case surveillance and/c is not allowed to be conducted, this configure shall be sugraded/windownal). Certificate Verification: Place Re-shak the wilding of confiant at http://www.apworld.com/active/lows.apv or www.apowell.com.at.Active Chems. Certificate is the property of AQC Middle East LLC and shall be returned immediately when domanded

Approvals of Eco Experts

NATURE SCIENCE FOUNDATION (A Unique Research and Development Centre for Society Improvement (ISO 9001:2015, 14001:2015, 45001:2018 & 50001:2018 Certified Organization & Ministry of MSME Registered Organisation) Coimbatore - 641 004, Tamil Nadu, India. [www.nsfonline.org.in] **Certificate of Lead Auditor Course** This is to certify that Dr. RAI SINGH, Department of Environment, Eco Paryavaran Laboratories and Consultants Pvt. Ltd., Mohali, Punjab has successfully completed a Lead Auditor Course on "Environment Management System, Green Campus Audit, Energy Audit and Hygiene Audit to Educational Institutions and Industrial Sectors" (Fourth Series) organized by the Nature Science Foundation, Coimbatore - 641 046, Tamil Nadu, India from 26th September 2022 to 30th September 2022. Motto of NSF 'Save the Nature to Save the Future' & 'Go Green to Save the Planet' B. Hythili Asher Ria. Certified ISO Auditor Certified Auditor IGBC AP Certified BEE Auditor Chairman Environment Management System Indian Green Building Council Nature Science Foundation Bureau of Energy Efficiency

Acknowledgement

Acknowledgement

Eco Paryavaran Laboratories and Consultants Pvt. Ltd. is thankful to the Management and the Principal/Director of Baba Farid Vidyak Society for entrusting processes of Energy Audit with

US.

We thank all the participants of the auditing team especially students, faculty and non-teaching staff who took pain along with us to gather the data through survey.

We also thank the office staff who helped us during the document verification.

For Eco Paryavaran Laboratories and Consultants Pvt. Ltd.

ector-74

Dr. Rai Singh Authorized Signatory (NABET approved FAE for AQ, AP, NV & RH) Contact: +91-8054443192; Email: environment@ecoparyavaran.org

***** End of Report *****