Total Co	al Ma	rks =	= 1000)	Total Credits = 26			
Semester 5 TH		Contact Hours			Max Marks		Total Morelya	Credits
Subject Code	Subject Name	L	Т	Р	Int.	Ext.	Marks	
BELES1-501	Power Systems – I (Transmission & Distribution)	3	1	0	40	60	100	4
BELES1-502	Control Systems	3	1	0	40	60	100	4
BELES1-503	Microcontrollers & PLC	3	0	0	40	60	100	3
BELES1-504	Power Systems - I Laboratory	0	0	2	60	40	100	1
BELES1-505	Control Systems Laboratory	0	0	2	60	40	100	1
BELES1-506	Microcontrollers & PLC Laboratory	0	0	2	60	40	100	1
BELES1-507	Institutional/Industrial Training (6-Week) *	0	0		60	40	100	3
Departmental l	Elective - I (Select any One)	3	0	0	40	60	100	3
BELED1-511	Electrical Drives							
BELED1-512	Electrical Machine Design							
BELED1-513	Electromagnetic Waves							
BELED1-514	Electrical Materials							
	Open-Elective	3	0	0	40	60	100	3
BHSMC0-019	Economics for Engineers	3	0	0	40	60	100	3
Total		18	2	6	480	520	1000	26

*Note: During the summer vacation after 4th semester.

	POWER SYSTEMS - I	
	(Transmission & Distributio	on)
Subject Code:	LTPC	Duration: 60 (Hrs.)
BELES1-501	3 1 0 4	

Course Objectives:

- 1. To introduce the students to the structure of power and distribution systems.
- 2. To introduce them to overhead transmission lines and underground cables and make them to understand their operating characteristics.
- 3. To make them familiar with the components and the mechanical design aspects of overhead transmission lines.

Course Outcomes:

Students will be able:

- 1. To choose working voltage and economic size of conductors for transmission and distribution sytems.
- 2. To analyse performance of transmission lines and underground cables.
- 3. To select and design overhead line insulators and transmission lines.

UNIT-I (15 Hours)

Basics of Power Systems: Evolution and present-day scenario of a power system, Structure of a power system, Bulk power grids and micro-grids, Introduction to electrical energy generation, Distributed energy resources.

Transmission and Distribution Systems: Line diagrams, Transmission and distribution voltage levels and topologies (meshed and radial systems), Synchronous grids (AC) and Asynchronous (DC) interconnections, Comparison of cost of conductors, Choice of working voltage for transmission and distribution, Economic size of conductors, Kelvin's law, Radial and mesh distribution networks, Voltage regulation.

UNIT-II (15 Hours)

Transmission Line Parameters: Types of conductors; Solid, Stranded, ACSR, Hollow and Bundle conductors, Electrical and magnetic fields around conductors, Line parameters of single and double circuit transmission lines, Resistance of transmission lines, Inductance of single phase two wire line, concept of geometric mean distance (G.M.D.), Inductance of three phase lines, Use of bundle conductors, Transposition of power lines, Capacitance of 1-phase and 3-phase lines, Effect of earth on capacitance of conductors.

Performance of Transmission Lines: Sinusoidal steady state representation of lines by equivalent circuits; Representation of short transmission line and medium length line by nominal T & π circuits, Representation of long length line by hyperbolic equations and equivalent T & π circuits, Power flow through transmission lines, Generalized ABCD constants, Voltage regulation and efficiency of short, medium and long lines, Ferranti effect.

UNIT-III (15 Hours)

Circle Diagram and Line Compensation: Receiving end circle diagram for long transmission lines based on ABCD constants, equivalent T circuits, power loci, Surge impedance loading, Reactive power requirement of system, Series and shunt compensation, Synchronous phase modifiers, Rating of phase modifiers.

Cables: Classification of cables based upon voltage and dielectric material, Insulation resistance and Capacitance of single core cable, Dielectric stress, Capacitance of 3 core cables, Methods of laying, Heating effect, Maximum current carrying capacity, cause of failure, Comparison with overhead transmission lines.

UNIT-IV (15 Hours)

Overhead Line Insulators: Types of insulators, String efficiency, Voltage distribution in a string of suspended insulators, Grading ring, Preventive maintenance

Electrical Design Of Transmission Line: Choice of voltage, Selection of conductor size, Choice of span, No. of circuits, Conductor configuration, Insulation design, Selection of ground wire.

Mechanical Design of Transmission Lines: Supporting structures for overhead lines, Elementary ideas about transmission line construction and erection, Stringing of conductors, Spacing, Sag and Clearance from ground, Sag-tension calculations.

- 1. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 2012.
- 2. C.L. Wadhwa, "Electric Power Systems", Second Edition, Wiley Eastern Limited, 1985.
- 3. Harder Edwin. I. "Fundamentals of Energy Production", John Wiley and Sons, 1982.
- 4. Burke James, J. "Power Distribution Engineering; Fundamentals and Applications" Marcel Dekk., 1996.
- 5. B.R. Gupta, "Generation of Electrical Energy", S. Chand (1998).
- 6. C.L. Wadhawa C.L, "A Course in Electrical Power", New Age international Pvt. Ltd
- 7. I. J. Nagrath and D. P. Kothari, "Power System Engineering", Tata McGraw Hill, 1995.
- 8. O. L. Elgerd, Electrical Energy System Theory An introduction, Tata McGraw-Hill Publication

CONTROL SYSTEMS						
Subject Code: L		Т	Р	С	Duration: 60 (Hrs.)	
BELES1-502 3		1	Δ	/		
Course Objectives:		1	U	-	<u></u>	
To make the students:						
1. To understand basic concepts of control	s	yst	ems	5, 5	such as; mathematical modelling, transfer	
functions, signal flow graphs etc.						
2. To learn basic goals of control system	IS	in	ter	m	s of transient/steady state time response	
behaviour and frequency response analys	is	5.				
3. To understand concept of stability and ap	p	lica	atio	n c	of different analysis methods.	
4. To introduce to the concept of state varia	b	le a	nal	ysi	S.	
Course Outcomes:						
Students will be able:						
1. To do modelling of linear-time-invariar	It	sys	sten	ns	using transfer function and state-space	
2 To do the stability assessment for linear	• •	tim	o in	110	riant systems	
3 To design simple feedback controllers	-	um	C III	va	flant systems.	
UNIT-	T	(15	H)111	rs)	
		(120				
Introduction: Industrial control examples,	M	lath	nem	ati	cal models of physical systems, Control	
hardware and their models, Transfer functio	n	mo	odel	s c	f linear time-invariant systems, Laplace	
transform.						
Facility of Control Ones Lange data	1.					
Feedback Control: Open-Loop and closed-	-10	op	sys	ste	ms, Benefits of feedback, Block diagram	
algebra and signal flow graphs.						
UNIT-J	I	(1	5 H	ou	rs)	
Time Demonstration Standard test			1.	T :		
Time Response Analysis: Standard test s	12	gna	IS,	1 11	ne response of first and second order	
systems for standard test inputs, Applica	t1	on	of	1n	itial and final value theorem, Design	
specifications for second-order systems ba	se	ed	on	the	time-response, Steady state error and	
coefficients.						
Concept of Stability Routh-Hurwitz C	ri	ter	ia	Re	alative Stability analysis Root-Locus	
technique Construction of Poot loci	11		ia,	1.(harve Stability analysis, Root-Locus	
teeninque, construction of Root-loci.						
UNIT-III (15 Hours)						
En anno Den Anno Anno Anno Anno Anno Anno Anno An	1. 3		4			
Frequency Response Analysis: Relationship between time and frequency response, Polar						
plots, Bode plots, Nyquist stability criterio	n,	, Re	elat	ive	stability using Nyquist criterion, Gain	
and Phase margin, Closed-loop frequency re	es	por	ise.			
Introduction to Controller Design: Stat	oil	litv	. St	ea	dy-state accuracy, Transient accuracy.	
Disturbance rejection Methods of control]e	er 4	lesi	gn	in frequency domain Lead and Lag	
compensation Analog and Digital impleme	nt	ati.	nn	ori of /	controllers Application of Proportional	
Integral and Derivative Controllers		un	511 (sona oners, rappication of rioportional,	

UNIT-IV (15 Hours)

State Variable Analysis: Concepts of state variables, State space model, Diagonalization of State Matrix, Solution of state equations, Eigen values and Stability Analysis, Concept of controllability and Observability, Pole-placement by state feedback, Discrete-time systems, Difference Equations, State-space models of linear discrete-time systems, Stability of linear discrete-time systems.

Recommended Text Books / Reference Books:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1999.
- 3. K. Ogata, "Modern Control Engineering", Prentice Hall, 2011.
- 4. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.
- 5. Dorf Richard C. and Bishop Robert H., Modern Control System, Addison-Wesley, Pearson, 2009.
- 6. B. S. Manke, Linear Control Systems, 2002

MICROCONTROLLERS AND PLC

Subject Code:

L T P C 3 0 0 3 Duration: 45 (Hrs.)

BELES1-503

Course Objectives:

- 1. To introduce to the architecture of microprocessor and microcontroller.
- 2. To study 8051 microcontrollers in detail.
- 3. To interface peripheral devices with microprocessors and microcontrollers.
- 4. To introduce to PLCs and their applications.

Course Outcomes:

The students will;

- 1. Know about the architecture, operation and instruction set of 8051 microcontroller.
- 2. Be able to do programming of 8051 microcontrollers.
- 3. Be able to Interface 8051 with peripheral devices.
- 4. Be able to use PLCs.

UNIT-I (11 Hours)

Fundamentals of Microprocessors: Fundamentals of microprocessor architecture, 8-bit Microprocessor and Microcontroller architecture, Difference between microprocessor and microcontroller, Definition of embedded system and its characteristics, Role of microcontrollers in embedded Systems.

The 8051 Architecture: PIN diagram of 8051, Internal block diagram, CPU, ALU, address, data and control bus, Working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles.

UNIT-II (12 Hours)

Instruction Set and Programming of 8051

Addressing modes: Introduction, Instruction syntax, Data types, Subroutines Immediate addressing, Register addressing, Direct addressing, Indirect addressing, Relative addressing, Indexed addressing, Bit inherent addressing, Bit direct addressing,

8051 Instruction set: Instruction timings, Data transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation instructions.

Assembly language programs, Assemblers and compilers, Programming and debugging tools.

UNIT-III (11 Hours)

Memory and I/O Interfacing: Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O such as LED, LCD, keyboard, ADC, DAC, timers, counters, memory devices.

External Communication Interface: Synchronous and asynchronous communication, RS232, SPI, I2C, Introduction and interfacing to protocols like Blue-tooth and Zig-bee.

Microcontroller Applications: Stepper motor interfacing, DC motor interfacing, Sensor interfacing, Application of microcontrollers in Arduino.

UNIT-IV (11 Hours)

Introduction to Programmable Logic Controllers

Introduction, Operation of PLC, Difference between PLC and Hardwired system, Difference between PLC and Computer, Relay logic and ladder logic, Ladder commands and examples of PLC ladder diagram realization, PLC timers, PLC counters, Applications of PLC, PLC interfacing with HMI/SCADA system.

- 1) M. A. Mazidi, The 8051 Microcontroller and Embedded System, Pearson Education (2008).
- 2) Kenneth J Ayola, The 8051 Micro Controller- Architecture, Programming and Application, Penram International Publication
- 3) R. S. Gaonkar, ", Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing (India) Pvt. Ltd., 2004.
- 4) D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 1991.
- 5) B. Ram, Fundamentals of Microprocessors and Microcomputers, Dhanpat Rai and Sons.
- 6) Otter, Job Dan, Programmable Logic Controller, P.H. International, Inc, USA
- 7) Dunning Gary, Introduction to PLCs, Tata McGraw Hill
- 8) John B Peatman, Design with Micro Controller, Tata McGraw Hill
- 9) Udayashankara V. and Mallikarjunaswamy M.S., 8051 Microcontroller Hardware, Software and Applications, TataMcGraw Hill Education Pvt. Ltd., (2010)

POWER SYSTEMS – I LABORATORY	
Subject Code: L T P C	
BELES1-504 0 0 2 1	
 Course Objectives: To demonstrate the various equipment and concepts related to; 1. Transmission and distribution of power, such as cables, conductors, supporting structures etc. 2. To visit a power/substation. 	insulators,
 Course Outcomes: Students will have more detailed insight about the need of various equipment transmission and distribution of power. They will be able to draw performance characteristics of these equipment. To practically compute parameters and performance of transmission lines and 	used for feeders.
LIST OF EXPERIMENTS	
1. To measure active power, reactive power and power factor of a three phase load wattmeter method and power factor meter and verify through current, voltage an measurement.	by two- nd power
2. To compute the ABCD parameters of a transmission line.	
3. To analyze the performance of short and medium length transmission lines determine efficiency and voltage regulation.	s and to
4. To analyze the performance of long transmission line and to determine its efficient voltage regulation and to demonstrate Ferranti effect.	ey and
5. To find the earth resistance using three spikes.	
6. To study the radial feeder performance (i) fed at one end and (ii) fed at both ends.	
7. To study and demonstrate different types of transmission and distribution conduct models of cables.	ctors and
8. To measure insulation resistance of a cable. OR	
To measure the capacitance of single-core and three-core cables.	
9. To study and demonstrate the methods of fault location in cables.	
10. To study different types of supporting structures and insulators for conductors. Al determine the efficiency of a string of insulators.	so to
11. Optimal capacitor placement on a system having variable reactive power and low profile.	voltage
12. Design a transmission system for given power and distance. OR	
Design of a small distribution system.	
Note: At least ten experiments should be performed in a semester.	

	CONTROL SY	ST	<mark>EM</mark>	<mark>S L</mark>	ABORATORY	
Subjec	et Code:	L	Т	Р	С	
BELE	81-505	0	0	2	1	
Course	e Objectives:					
1. To 2. To 3. To	o understand the basics concepts of M o introduce variety of control syste o comment about the stability of	IAT m ያ f de	'LA stra sig	B s teg nec	oftware. gies. 1 systems.	
	e Outcomes:)	6			
1. 1 2. T 3. T 4. A	To understand the basics of WATLAR To understand variety of control sys To acquire skills to understand all type Ability to analyse the stability of cont	ten tes o trol	n st f co syst	rat ntro tem	egies. ol components. s.	
	LIST O	F E	XPI	ERI	IMENTS	
1. F	Familiarization with MATLAB and its	s co	ntro	l sy	stem toolbox. Familiarization with	
Ν	MATLAB Simulink toolbox.					
2. E	Determination of step response for fire	st or	der	anc	second order system with unity feedback	
a	nd their display on CRO. Calculation	and	ł ve	rific	cation of time constant, peak overshoot,	
S	etting time etc. from the response.					
3. S u	Simulation of step response and impul unity feedback using MATLAB.	lse r	esp	ons	e for type-0, type-1 and type-2 systems wit	h
4. E	Determination of Root Locus, Bode-P	lot,	Nyo	quis	t Plot using MATLAB-Control system	
to	oolbox for 2nd order system. Determi	inati	ion	of d	lifferent control system performance indice	es
fi	rom the plots.					
5. 📕	Determination of PI, PD, PID controll	er a	ctio	n of	f first order simulated process.	
6. E	Experimental determination of approx	ima	te ti	rans	fer function from Bode plot.	
7. E	Evaluation of steady state error, setting	g tir	ne,	pero	centage peak overshoot, gain margin, phas	se
n	nargin, with addition of lead compens	sato	r an	d by	y compensator in forward path transfer	
fi	unction for unity feedback control sys	sten	1.			
8. E	Determination of control system speci	fica	tion	s fo	or variations of system parameters in	
р	practical position control system.					
9. E	Design of a second order linear time in	nvar	riant	t co	ntrol system and study of system response	:
W	vith unit step input.					
L						

- 10. To study the characteristics of potentiometers and to use 2- potentiometers as an error detector in a control system.
- 11. To study the Synchro Transmitter-Receiver set and to use it as an error detector.
- 12. To study the Speed Torque characteristics of a DC Servo Motor and explore its applications.
- To obtain the transfer function of a D.C. motor D.C. Generator set using Transfer Function Trainer.
- 14. To study the speed control of an A.C. Servo motor using a closed loop and open loop systems.

15. (i) To study the operation of a position sensor and study the conversion of position in to corresponding voltage (ii) To study a PI control action and show its usefulness for minimizing steady state error of time response.

Note: At least twelve experiments should be performed in semester.

MICROCONTROLLER AND PLC					
LADODATODY					
BELES1-506 0 0 2 1					
Course Objectives:					
To make the students:					
1. Familiar with microprocessor and microcontroller kits.					
2. To write and demonstrate assembly language programms for arithmatic and logical					
operations.					
3. To interface peripheral devices to microcontrollers and to write programs to control their					
operation.					
4. To demonstrate applications of PLCs.					
Course Outcomes:					
Students will:					
1. Become familiar with the microcontrollers and PLCs.					
2. Be able to write assembly language programms for various types of applications.					
3. Become familiar with the use of PLCs in industry.					
LIST OF EXPERIMENTS					
1. Introduction to 8085 Microprocessor kit/simulator and 8051 Microcontroller					
kit/simulator.					
2. Write a program to (i) Add (ii) Subtract (iii) Multiply and (iv) Divide, two 8-bit numbers					

[have at the many many here the set of the second discussion of the second t
	lying at two memory locations and display the result.
3.	Write a program to check a number for being ODD or EVEN and show the result on
	display.
	OR
	Write a program to split a byte in two nibbles and show the two nibbles on display.
4.	Write a program to arrange TEN numbers stored in memory location in ascending
	and descending order.
5.	Write a program to
	(i) Find a factorial of a given number.
	(ii) Generate Fibonaci Series
	(i) Sum up a finite series
6.	Study of interrupt structure of 8051 micro-controllers and to write a program to show
_	the use of INT0 and INT1.
7.	Write a program of flashing LED connected to port 1 of the micro-controller
	OR VIEW IN THE REPORT OF A DECISION OF A DECISIONO OF A DECISIO OF
0	Write a program to develop rolling display.
8.	Write a program to control a stepper motor in direction, speed and number of steps.
9.	Implementation of different gates using PLC
10.	Implementation of DOL and star dalta starter using PLC.
11.	Implement basic logic operations, motor start and stop operation using
12.	(i) Timers (ii) Counters
13.	Motor forward and reverse direction control using PLC.
14.	Make a PLC based system (i) for rack feeder and/or (ii) for conveyor belt and/or (ii) for
	separating and fetching work pieces.
	OR OR
	Implement a PLC based traffic light control.
Note: At	least Ten experiments should be performed in a semester.

	ELECTRICAL DRIVES	5
Subject Code:	LTPC	Duration: 45 (Hrs.)
BELED1-511	3 0 0 3	

Course Objectives:

- 1. To review the characteristics of DC motors.
- 2. To know about the operation of DC drives and their speed control methods using power electronic converters.
- 3. To know about the various control stratigies of induction motors using power electronic control methods.

Course Outcomes:

Students will be able:

1. To draw the characteristics of DC motors and induction motors.

2. To control the speed of DC motors using power electronic converters.

3. To use power electronic converters for induction motor speed control.

UNIT-I (11 Hours)

DC Motor Characteristics

Review of e.m.f and torque equations of DC machine, review of torque-speed characteristics of separately excited DC motor, Change in torque-speed curve with armature voltage, Load torque-speed characteristics, Operating point, Armature voltage control for varying motor speed, Flux weakening for high speed operation.

Chopper Fed DC Drive

Review of DC chopper and duty ratio control, Chopper fed DC motor for speed control, Steady state operation of a chopper fed drive, Armature current waveform and ripple, Calculation of losses in DC motor and chopper, Efficiency of DC drive, Smooth starting.

UNIT-II (12 Hours)

Multi-Quadrant DC Drive

Review of motoring and generating modes operation of a separately excited DC machine, Four quadrant operation of DC machine; Single-quadrant, Two-quadrant and Four-quadrant choppers; Steady-state operation of multi-quadrant chopper fed DC drive, Regenerative braking.

Closed-loop Control of DC Drive

Control structure of DC drive, Inner current loop and outer speed loop, Dynamic model of DC motor, Dynamic equations and transfer functions, Modeling of chopper as gain with switching delay, Plant transfer function for controller design, Current controller specification and design, Speed controller specification and design.

UNIT-III (11 Hours)

Induction Motor Characteristics: Review of induction motor equivalent circuit and torquespeed characteristic, Variation of torque-speed curve with (i) applied voltage, (ii) applied frequency and (iii) applied voltage and frequency, Typical torque-speed curves of fan and pump loads, Operating point, Constant flux operation, Flux weakening operation.

Control of Slip Ring Induction Motor

Impact of rotor resistance of the induction motor torque-speed curve, Operation of slip-ring induction motor with external rotor resistance, Starting torque, Power electronic based rotor side control of slip ring motor, Slip power recovery.

UNIT-IV (11 Hours)

Scalar Control or Constant V/f Control of Induction Motor

Review of three-phase voltage source inverter, Generation of three-phase PWM signals, Sinusoidal modulation, Space vector theory, Conventional space vector modulation, Constant V/f control of induction motor, Steady-state performance analysis based on equivalent circuit, Speed drop with loading, Slip regulation.

- 1) G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989.
- 2) R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall, 2001.
- 3) G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2002.
- 4) W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001.

FLECT	RICAL MA	CH	INE	DESIGN		
Subject Code:	LT	Р	С	Duration: 45 (Hrs.)		
BELED1-512	30	0	3			
Course Objectives:						
1. Understand the principles of electron	ctrical machi	ne d	esign	l.		
2. To know about the various fa	ctors which	infl	uence	e the design: electrical, magnetic and		
thermal loading of electrical made	chines					
3. To design transformers and indu	ction motors	5.				
4. To introduce to use of computer	s in design.					
Course Outcomes:						
Students will:						
1. Know the constructional features.						
2. Be able to evaluate performance	characterist	ics o	felec	ctrical machines.		
3. Be able to carry out a basic design	gn of an ac n	nachi	ne.			
4. Be able to use software tools to	do design ca	cula	tions	•		
	UNIT-I (1	1 H	ours)			
Introduction: Major consideration	ons in elect	rical	mac	chine design, Electrical engineering		
materials, Space factor, Choice	of specific	elec	trica	l and magnetic loadings, Thermal		
considerations, Heat flow, Tempera	ture rise, Ra	ting	of m	achines.		
	UNIT-II (12 H	ours)		
Transformers:						
Sizing of a transformer, Main	dimensions,	Ou	tput	kVA for single- and three-phase		
transformers, Window space f	transformers, Window space factor, Overall dimensions, Operating characteristics,					

Regulation, No load current, Temperature rise in transformers, Design of cooling tank, Methods for cooling of transformers.

UNIT-III (11 Hours)

Induction Motors:

Sizing of an induction motor, Main dimensions, Length of air gap, Rules for selecting rotor slots of squirrel cage machines, Design of rotor bars & slots, Design of end rings, Design of wound rotor, Magnetic leakage calculations, Leakage reactance of poly-phase machines, Magnetizing current, Short circuit current, Circle diagram, Operating characteristics.

UNIT-IV (11 Hours)

Computer aided Design (CAD):

Limitations (assumptions) of traditional design, Need for CAD analysis, Synthesis and hybrid methods, Design optimization methods, Variables, Constraints and Objective function, Problem formulation.

Introduction to FEM based machine design.

Introduction to complex structures of modern machines: Permanent magnet synchronous motor (PMSM), Brushless DC motor (BLDC), Switched reluctance motor (SRM) and Clawpole machines.

Recommended Text Books / Reference Books:

1) A. K. Sawhney, "A Course in Electrical Machine Design", Dhanpat Rai and Sons, 1970.

2) M.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS London.

3) S. K. Sen, "Principles of Electrical Machine Design with Computer Programmes", Oxford and IBH Publishing, 2006.

4) K. L. Narang, "A Text Book of Electrical Engineering Drawings", SatyaPrakashan, 1969.
5) A. Shanmugasundaram, G. Gangadharan and R. Palani, "Electrical Machine Design Data Book", New Age International, 1979.

6) K. M. V. Murthy, "Computer Aided Design of Electrical Machines", B.S. Publications, 2008.

7) Electrical machines and equipment design exercise examples using Ansoft's Maxwell 2D machine design package.

ELEC	TRO	MA	GN	JE T	IC W.	AVES	
Subject Code:		L	Т	Р	С	Duration: 45 (Hrs.)	
BELED1-513	3	0	0	3			
Course Objectives:							
1. Analyse transmission lines and e	stima	ite v	olta	ige a	and cur	rrent at any point on transmission	
line for different load conditions.							
2. Analyse the field equations for the	ne wa	ve p	orop	aga	tion in	special cases such as lossy and low	
loss dielectric media.							
3. To analyse radiation by antennas	5.						
Course Outcomes:							
Students can:							
1. Provide solution to real life plan	e wav	e pi	robl	ems	for va	rious boundary conditions.	
2. Visualize TE and TM mode patt	erns c	of fi	eld	disti	ibution	ns in a rectangular wave-guide.	
3. Analyze wave-guides and under	stand	rad	iatic	n b	y <mark>an</mark> ter	nnas.	
	UN	IT-	I (1	5 H	ours)		
Transmission Lines. Introduction	Con	Pont	of	lict	ributed	elements Equations of voltage and	
current Standing waves and impe	dance	tra	nefe	orm	ation	Lossless and low-loss transmission	
lines Power transfer on a transf	nissio	n 1	ina		ation, I	of transmission line in terms of	
admittances Transmission line ca	lculat	ion	me,	ith	the he	of Smith chart Applications of	
transmission line. Impedance match	ing u	sin	r tra	nen	ission	lines	
Maxwell's Equations: Basic laws	of Ele	otr	- 110 - ma	ane	tice G	auss's law Ampere's Circuital law	
Faraday's law of Electromagnetic i	nduct	ion	Ma	y Mu		ustions Surface charge and surface	
current Boundary conditions at me	dia in	terf		AW	JII S CY	functions, Surface charge and surface	
current, Boundary conditions at the		terr	acc.				
	UNI	[T -]	I (1	5 H	lours)		
Uniform Plane Waves: Homogen	eous	unb	oun	d m	edium	, Wave equation for time harmonic	
fields,Solution of the wave equa	ation,	U	nifo	rm	plane	wave, Wave polarization, Wave	
propagation in conducting medium	n, Ph	ase	ve]	locit	y of a	a wave, Power flow and Poynting	
vector.	vector.						
Plane Waves at Media Interface:	Plane	e w	ave	in a	rbitrar	y direction, Plane wave at dielectric	
interface, Reflection and refraction of waves at dielectric interface, Total internal reflection,							
Wave polarization at media interface, Brewster angle, Fields and power flow at media							
interface, Lossy media interface, Re	interface, Lossy media interface, Reflection from conducting boundary.						
UNIT-III (15 Hours)							
Waveguides: Parallel plane waveg	uide.	Tra	nsv	erse	Electr	ic (TE) mode, Transverse Magnetic	
(TM) mode, Cut-off frequency, P	hase	velc	city	' an	d disp	ersion. Transverse Electromagnetic	
(TEM) mode, Analysis of waveguid	(TEM) mode, Analysis of waveguide-general approach, Rectangular waveguides.						

Antennas: Radiation parameters of antenna, Potential functions, Solution for potential functions, Radiations from Hertz dipole, Near field, Far field, Total power radiated by a dipole, Radiation resistance and radiation pattern of Hertz dipole, Hertz dipole in receiving mode.

Recommended Text Books / Reference Books:

- 1) R. K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005.
- 2) D. K. Cheng, "Field and Wave Electromagnetics", Addison-Wesley, 1989.
- 3) M. N.O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 2007.
- 4) C. A. Balanis, "Advanced Engineering Electromagnetics", John Wiley & Sons, 2012.
- 5) C. A. Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 2005.

E	LECTRICAL MATERIALS	
Subject Code:	LTPC	Duration: 45 (Hrs.)
BELED1-514	3 0 0 3	
Course Objectives:		
1. Aware about various types o	f conducting materials and their a	pplications.
2. Aware about various propert	ies of insulating materials and the	ir applications.
3. Aware about various types o	f magnetic materials and their app	plications.
Course Outcomes:		
1 1 1 1 1 1 1 1		1 / 1 / 1

- 1. Analyze the characteristics of different types of materials viz. conductors, insulators, and magnetic materials etc.
- 2. Select a suitable material for manufacturing electrical equipment.

UNIT-I (15 Hours)

Conducting Materials: Classification of material into conducting, semi conducting and insulating materials, Factors affecting resistance such as alloying and temperature, Classification of conducting material as low resistivity and high resistivity materials, Low resistivity copper alloys and their practical applications, Applications of special metals, High resistivity materials and their applications, Super conductivity.

UNIT-II (15 Hours)

General Properties of Insulating Materials

Electrical Properties: Volume resistivity, Surface resistance, Dielectric loss, Dielectric strength (breakdown voltage), Dielectric constant,

Physical Properties: Hygro-scopicity, Tensile and Compressive strength, Abrasive resistance, Brittleness.

Thermal Properties: Heat resistance, Classification based on permissible temperature rise,

Effect of overloading on the life of an electrical appliance, Increase in rating with the use of insulating materials having higher thermal stability, Thermal conductivity, Electro-thermal breakdown in solid dielectrics.

Chemical Properties: Solubility, Chemical resistance, Weather-ability, Mechanical properties, Mechanical structure, Tensile structure.

Applications of Insulating Materials

Definition and classification of plastics, Thermosetting materials, Thermo-plastic materials, Natural insulating materials, Properties and their applications, Gaseous materials, Ceramics, properties and applications.

UNIT-III (15 Hours)

Magnetic Materials and Special Materials: Introduction and classification of ferromagnetic materials, Permeability, B-H curve, Magnetic saturation, Hysteresis loop (including) coercive force and residual magnetism, Concept of eddy current and Hysteresis loss, Curie temperature, Magneto-striction effect, Soft Magnetic Materials, Hard magnetic materials, Hall effect and its applications, Thermocouple, Bimetals, Leads, Soldering and Fuses material and their applications.

Recommended Text Books / Reference Books:

1) SK Bhattacharya, "Electrical and Electronic Engineering Materials"1st edition Khanna Publishers, New Delhi,2006.(Unit 1,2,3)

2) A.J. Dekker "Electrical Engineering Materials", PHI, 2006. (Unit 4,5)

3) Grover and Jamwal, "Electronic Components and Materials" DhanpatRai and Co., New Delhi.

4) Sahdev, "Electrical Engineering Materials", Unique International Publications

5) C. S. Indulkar& S. Thiruvengadam, "Electrical Engineering Materials", S. Chand & Com. Ltd, New Delhi -55

6) S.P. Seth, P.V. Gupta "A course in Electrical Engineering Materials", Dhanpat Rai& Sons.

	ECONOMICS FOR ENGINEERS	
Subject Code: BHSMC0-019	L T P C	Duration: 45 Hrs
	300 3	

Course Objectives

The main aim of this course is:

- 1. To equip the students of management with time tested tools and techniques of managerial economics to enable them to appreciate its relevance in decision making.
- 2. To explore the economics of information and network industries and to equip students with an understanding of how economics affect the business strategy of companies in these industries.
- 3. To develop economic way of thinking in dealing with practical business problems and challenges

Course Outcomes

After completing this course, the students will be able to:

- 1. Able to analyze the demand and supply conditions of the market and accordingly assess the position of a company.
- 2. Understand the basic economic problems faced by the society and make effective decisions.
- 3. Design competition strategies which includes costing, pricing, product differentiation, and market environment according to the natures of products and the structures of the markets.
- 4. Analyze the market competitions and design strategies accordingly.

UNIT-I (12 Hrs.)

Micro Economics: Meaning, Nature, Scope and Limitations Basic concepts: Marginal and Incremental Principles, Opportunity Cost, Equilibrium Utility: Cardinal Utility Approach: Diminishing Marginal Utility; Ordinal Utility Approach, Indifference Curve, Properties, Consumer Equilibrium and Marginal Rate of Substitution.

UNIT-II (11 Hrs.)

Demand: Meaning, Determinants, Law of Demand and its Exceptions. Elasticity of Demand: Measurement, Degree of Elasticity. Price, Income and Cross Elasticity of Demand. Revenue: Total Revenue (TR), Average Revenue (AR), Marginal Revenue (MR) and their Relationship.

UNIT-III (12 Hrs.)

Production Function: Meaning, Short-Run Production Function and Law of Variable Proportions, Long Run Production and Laws of Returns. Cost of Production: Concept of Economic and Managerial Costs, Short Run and Long Run Cost Curves. Economies and Diseconomies of Scale

UNIT-IV (10 Hrs.)

Equilibrium of Firm and Industry: Perfect Competition, Monopoly and Discriminating Monopoly. Monopolistic Competition: Characteristics, Individual and Group Equilibrium, Concept of Selling Cost. Oligopoly: Characteristics, Cornet's Model, Kinked Demand Curve, Concepts of Cartel and Price Leadership. Distribution: Marginal Productivity and Modern Theory of Determination.

Recommended Books

1. D. Salvatore, 'Microeconomic Theory', Tata McGraw Hill.

- 2. R.H. Dholkia and A.N. Oza, 'Microeconomics for Management Students', <u>Oxford University</u> <u>Press.</u>
- 3. D.N. Dwivedi, 'Managerial Economics', Vikas Publishing
- 4. P.L. Mehta, 'Managerial Economics', Sultan Chand.

Semester 6 TH		С	onta	ct	Μ	ax	Total		
Subject Code	Subject Name	I	Hour T	s P	Ma Int	rks Ext	Marks	Credits	
BELES1-601	Power Systems – II (Protection)	3	0	0	40	60	100	3	
BELES1-602	Electrical Measurements & Instrumentation	3	0	0	40	60	100	3	
BELES1-603	Power Systems - II Laboratory	0	0	2	60	40	100	1	
BELES1-604	Electrical Measurements & Instrumentation Lab	0	0	2	60	40	100	1	
BELES1-605	Electrical Design & Estimation Lab	0	0	2	60	40	100	1	
Departmental Electives – II	(Select any one from the following list)	3	0	0	40	60	100	3	
BELED1-611	Industrial Electrical Systems								
BELED1-612	Non-Linear &Digital Control Systems		\langle						
BELED1-613	Computer Architecture								
BELED1-614	Computational Electromagnetics								
Departmental	(Select any one from the	3	0	0	40	60	100	3	
Electives – III	following list)								
BELED1-621	Wind & Solar Energy Systems								
BELED1-622	HVDC Transmission Systems								
BELED1-623	EHVAC Transmission Systems								
BELED1-624	FACTS Devices in Transmission								
X/X/X/X/X/	& Distribution Networks	3	0	0	40	60	100	3	
XXXXX	Open-Liecuve"	3	0	0	40	00	100	3	
BELES1-606	Introduction to Industrial Management	3	0	0	40	60	100	3	
	Total	-	-	-	420	480	900	21	

Total Credits = 21

*Open Electives (OE) can also be taken from existing lists of Open Elective-I, Open Elective-II and Open Elective-III subject lists.

DO	VFP (V	TF	MS	<u>- П</u>			
FO	(Protection)							
Subject Code:	L	Т	Р	C	Duration: 45(Hrs.)			
BELES1-601	3	0	0	3				
Course Objectives:								
1. To provide knowledgeaboutprincip	le and	com	npor	ents	s of protective system.			
2. To impart knowledge about basics	of Sub	stat	ion,	Iso	ator and Fuses.			
3. To provide knowledge about opera	ting pi	inci	ple,	typ	es of relays and circuit breakers.			
4. To provide knowledge about protection	ction o	f Fe	ede	r, B	us bar, Generator and Transformer			
Course Outcomes:								
Students will be able to:								
1. Explain causes and effects of fa	ults,co	mp	one	nts	usedfor power system protection such			
as; isolators and fuses, relays, circu	it breal	kers	etc					
2. Classify types of relays and circ	cuit b	eak	ers	and	explain their working principles and			
operation.								
3. Protecttransmission lines, feeders,	bus ba	rs, g	gene	rato	r and transformer.			
4. Develop concepts about the basic	c princ	riple	esof	sta	tic and digital protection.			
UN	IT-L	11]	Hou	rs)				
Introduction to Components of Pro	tectior	ı Sy	ster	n:				
Need for Protective System, Nature a protection, Primary and backup protectionsystem, Components and cl	nd cau ction, l assific	ses Esse atio	of fa ntia n of	aults l qu pro	, Types and effects of faults, Zones of alities of protection, Basic principle of tective system.			
Substation					-			
Substation:								
Types, Classification, Main Equip	ment,	La	yout	t, E	Bus-bar Arrangement of Substation,			
Functions, Operation, Types and ratin	g of Is	olat	ors,	Cha	aracteristics, Types and rating of fuses.			
UN	IT-II	(12	Hou	irs)				
Vircuit Breakers:	Draalz	D.	otin	~~~	Ano Initiation and their Intermetion			
Mathada Ara Quanching Theories Bo				igs,	Arc initiation and their interruption			
Brocker, Minimum Oil Circuit Dro	SUTKI	ng v A in	Cire	ige,	Breaker Air Blast Circuit Breaker			
Breaker, Minimum Oil Circuit Breaker, Air Circuit Breaker, Air Blast Circuit Breaker,								
Protoctive PalayerIntroduction Class	ifi onti	.Kel	Con	aten	ational factures and Characteristics of			
Floetromagnetia Induction Over au	rront	un,		Dir	ational over surrent relay Distance			
releve: Impedance relev. Peactance re	lov on	ieia i M	ys, ho r		Differential Polova			
Under voltage relay. Over voltage re	lay and Joy T	rang	110 I 1 Jan		, Differential Relays.			
relay Rate of change of frequency	(df/dt)	rel rel	,-1ay ave	, U Rev	rese-nower relay. Negative sequence			
relav	(ui/ut)	101	ays	,1.U V	erse power relay, regaine sequence			
ionay.								

UNIT-III (11 Hours)

Transmission Line, Feeder and Bus Bar Protection:

Over current protection by time graded system, Current graded and Time- current graded system, Protection of parallel feeder, Protection of ring mains feeder, Over current earth fault protection.

Distance Protection of transmission lines, Comparison amongdistance relays, Differential and percentage differential protection, Pilot relaying protection of feeder, Differential protection of bus bars.

Overvoltages on transmission lines such as switching overvoltages and lightning overvoltages, Protection of transmission lines against lighting, Protection of power system apparatus against surges.

UNIT-IV (11 Hours)

Transformer Protection:

Over current protection, Percentage differential protection, Incipient faults in transformers, Inter-turn fault, Protection against over fluxing.

Generator Protection:

Various faults and abnormal operating conditions, Protection against unbalanced loading, Over-speeding, Loss of excitation, Loss of prime mover.

Introduction to Advance Protection Systems:

Carrier aided protection of transmission lines, Static comparators as relays, Structure and Operation of Digital protection system, Advantages of digital techniques in power system protection.

- 1. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 2012.
- 2. Burke James, J. "Power Distribution Engineering; Fundamentals and Applications" Marcel Dekk., 1996.
- 3. C.L. Wadhwa, A Course in Electrical Power, New Age international Pvt. Ltd
- 4. Badri Ram and D.N. Vishwakarma, Power system Protection and Switchgear, Tata McGraw Hill, 2001
- 5. M.V. Deshpande, Switchgears and Protection, Tata McGraw Hill
- 6. Ashfaq Hussain, Electrical Power system, 3rd edition, CBS Publishers & Distributors Pvt. Ltd. New Delhi, 2007.
- 7. S. S. Rao, Switchgear Protection and Power System, Khanna Publishers, Delhi,10th Edition,1992
- 8. Dahiya and Attri, Substation Engineering, Khanna Publishers

ELECTRICAL MEASUREMENTS								
& INSTRUMENTATION								
Subject Code:	L	Т	Р	С	Duration: 45 (Hrs.)			
BELES1-602	3	0	0	3				
Course Objectives:								
1. To make the students aware about	t th	ne t	pasio	cs	of measurements and instrumentation			
systems.								
2. To impart knowledge about different	t ins	strui	men	ts f	for electrical measurements.			
3. To introduce to basic concepts of dif	tere	ent t	ype	s of	t sensors and transducers.			
Course Outcomes:								
Students will be able:	ah		toni	ati a	a and equation of various			
1. To explain the constructional features,	, chi	arac	terr	suc	es and operation of various			
2 To measure R L and C using DC and		bri	dae	c				
3. To use CRO and instrument transform	ers	for	mea	s. Isui	rement and instrumentation purposes.			
4. To select transducers for different app	lica	tion	IS.		han an a			
UNI	T-I	(12	2 Ho	our	s)			
		İ						
Measurment Systems:								
Introduction, Necessity of measurement	s, B	loc	k di	agr	am of measurement system, Instrument			
characteristics such as True value, Accu	irac	y, F	rec	isic	on, Resolution, Drift, Hysteresis, Dead-			
band, Repeatability and sensitivity, Diffe	erer	nt ty	pes	of	errors in measurement.			
Measuring Instruments:								
Principle of operation and construction	al f	eatu	ıres	of	D'Arsonval galvanometer, Permanent			
magnet moving coil (PMMC), Moving	g Ir	on i	inst	run	nents (Repulsion and Attraction type),			
Electrodynamic type instruments, Meas	ure	men	t of	cu	irrent, voltage, power and power factor			
by using these instruments, Use of Shur	nts,	Mu	ltip	ier	s and Potential dividers, Energy meter,			
Digital Multi-meter, Clamp-on meters.								
UNI	T-I	[(1	1 H	oui	rs)			
Measurement of Resistance: Low	Med	liun	1 ar	nd	High resistance measurement using			
Kelvin Double Bridge, Ammeter-Voltm	eter	: me	etho	d, V	Wheat Stone Bridge, Megohm bridge,			
Megger.				,				
Measurement of Inductance and Capa	acit	anc	e:M	[axy	well Inductance, Hay's, Anderson and			
Schering Bridges, Measurement of frequ	ienc	y b	y W	ein	n bridge method.			

UNIT-III (11 Hours)

Oscilloscope:

Basic principle and construction of Analog CRO, Sweep modes, Applications in measurement of voltage, frequency (Lissajous pattern), Introduction to Dual Trace Oscilloscope, Digital Storage Oscilloscope, Sampling oscilloscope, Comparison between analog and digital oscilloscope.

Instrument Transformers:

Theory and construction of current and potential transformers, Ratio and phase angle errors and their minimization, Characteristics of current transformers(CT) and potential transformers(PT) and their Testing.

UNIT-IV (11 Hours)

Transducers:

Transducer, Difference between sensor and transducer, Transducer characteristics, Classifications and Types, Basic requirements of Transducer/Sensors, Displacement Transducers: LVDT, RVDT and Piezoelectric, Resistance Thermometer, Thermistors, Thermocouples, Strain Gauge, Applications of Transducers.

- 1. Helfrick A.D. and Cooper W.D., "Modern *Electronic Instrumentation and MeasurementTechniques*", PHI, 1990.
- 2. A.K. Sawhney, Puneet Sawhney, "A course in Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai & Sons, 2011.
- 3. Jones and Chin, 'Electronic Instruments and Measurement', 2010.
- 4. J. Toppin, 'Theory of Errors', Wessely Publishing, 2000.
- 5. Bell David A., Electronics Instrumentation and Measurements, Prentice Hall, India
- 6. Golding Edward William and Widdis Frederick Charles, *Electrical Measurements andMeasuring instruments*, WheelersIndia
- 7. Murthy D. V. S., Transducers and Instrumentation, Prentice-Hall,India

	POWER SYST	<mark>EM</mark>	<mark>S –</mark>	II	LABORATORY					
Subject	Code:	L	Т	Р	С					
BELES	1-603	0	0	2	1					
Course	Course Objectives:									
1. U	1. Understand operation of relays and circuit breakers.									
2. 1	2. To demonstrate the characteristics of different types of relays.									
Student	s will be able:									
1. Te	1. To demonstrate operation of relays and circuit breakers.									
2. To	analyze various protection scheme	s in	pov	ver	system.					
3. To	plot characteristics of various type	s of	rela	ays,	circuit breakers and fuses.					
	LIST O	FΕ	XPI	ERI	IMENTS					
1.	To study the characteristics of over	cui	ren	t pr	otection.					
2.	To study the characteristics of earth	h fa	ult p	orot	ection.					
3.	To draw the operating characteristi	cs c	of fu	se (HRC or open type) and bimetal mini circuit					
	breakers.									
4.	To study air circuit breakers, oil cir	rcui	t bre	eake	ers, vacuum circuit breakers and SF_6 circuit					
	breakers and demonstrate at least t	wo (of th	nem						
5.	To study over current static relay.									
6.	To study the performance of under	vol	tage	e rel	ay and over voltage relay.					
7.	To study the characteristics of Dist	anc	e (Ir	npe	dance, Reactance and Mho) Relay.					
8.	To demonstrate the operation of Bu	ıchł	nolz	's re	elay.					
9.	To find the breakdown strength of	tran	sfor	me	r oil.					
10.	To study the different types of faul	ts o	n tra	ansr	nission line demonstrationpanel/model.					
11.	Short circuit analysis and calculation	ons	of c	ircu	it breaker ratings for a power system					
netw	ork.									
	OR									
	Design of protection system for a s	ubs	tatic	on.						
12.	To obtain relay co-ordination on a	ром	ver s	syste	em.					
13.	Visit to a power generation station/	/sub	stati	ion.						
Note	Note: At least ten experiments should be performed in a semester.									

	ELECTRICAL MEASUREMENTS								
& INSTRUMENTATION LAB									
Subject Code:	L	Т	Р	С	2				
BELES1-604	0	0	2	1					
Course Objectives:									
1. To demonstrate the co	nstructional featur	res o	of n	nea	asuring instruments.				
2. To demonstrate the ap	2. To demonstrate the applications of measuring instruments.								
3. To draw the characteristics and use of various types of transducers.									
Course Outcomes:									
Students will be able:									
1. To apply the basic meas	urement techniqu	es a	nd ı	use	e measuring instruments.				
2. To measure various elec	trical quantities u	sing	g va	rio	ous types of meters.				
3. To practically use current	nt and potential tr	ansf	orn	ner	rs. CRO and DSO.				
	List of J	Exp	erin	ne	ents				
1 To domonstrate the	onstructional fac	• •		f	various turnes of indicating managuring				
instruments such as P	MMC type Movi	na i	ron	01 1 1/1	various types of indicating measuring				
2 Current Measurement	using Clamp-on r	nete	er ar	id i	Hall Sensor				
3. To measure high value	of DC current ar	nd v	olta	ge	using shunt and Multiplier.				
4. To measure the active	power in 3-phase	e ba	lanc	ed	and unbalanced load by two wattmeter				
method and observe th	e effect of power	fact	or	/ar	riation on wattmeter reading.				
5. To study and calibrate	Energy Meter.				-				
6. To measurement of low	v resist <mark>ance using</mark>	g Wl	heat	st	tone bridge and Kelvin's double bridge.				
7. Measurement of High	resistance and Ins	ulat	ion	re	esistance using Megger.				
8. Measurement of self-in	iductance by usin	ig ai	1y b	ric	dge technique such as Anderson's bridge				
as well as LCR meter.									
9. Measurement of capac	itance by using a	any	bri	dge	e technique such as Schering bridge as				
10 Massurament of fragu	nov using Wain'	Dr	daa						
10. Measurement of freque	sincy using weins	S DI.	luge						
Determination of frequ	ency and phase a	nole	e usi	ino	σCRO				
11. Use a DSO to capture	transients like a s	ten o	chai	יייב 196	e in R-L-C circuit.				
OR		P		-8-					
Download one-cycle data	of a periodic wav	efor	m f	ro	om a DSO anduse values to compute the				
RMS value.					-				
12. To study the connecti	ons and use of a	pot	tenti	ial	transformer (PT) and to find out ratio				
error.									
13. To study the connection	ins and use of a cu	urre	nt tr	an	sformer (CT) and to find out ratio error.				
14. Measurement of displa	cement usingLVI	DTa	and	R	VDT.				
15. Study the characteristi	cs of (1) Resistant	e T	emp	ber	ratureDetector(KID) and (11) Thermistor				
and measurement of te	inperature using t	nen	1.	or c	and its application in a massuring unit				
10. Study the characteristi	lo of a straffi gaug	50 56	JISC	лζ	and its application in a measuring unit.				
Note: At least 12 experime	nts must be perfor	rme	d in	a	semester.				

ELECTRICAL DESIGN & ESTIMATION LAB
Subject Code: L T P C
BELES1-605 0 0 2 1
 Course Objectives: To know about the layout of wiring circuits of electrical installations of a residential building or/and an educational institute or/and anindustry. To enable the students to prepare the schedule of materials with specifications and estimates for different types of electrical installations. To know about wiring arrangements of motor control circuits and to do an energy audit of a smallutility. Course Outcomes: To estimate the cost of various types of electrical installations.
 To identify design goals and analyze possible approaches to meet given specifications with realistic engineering constraints. To use modern engineering software tools. To work amicably as a member of an engineering design team.
 List of Experiments To study the Indian Electricity Act. To estimate the cost of overhead serviceconnection and an underground serviceconnection.
 To estimate (i) the load and cost of any five electrical appliances and (ii) their cost of repair and maintenance. To carry out the schematic wiring diagram of a residential
5. To study design parameters of electrical panelboards.6. To draw wiring diagrams of motor control circuits for the starting of induction and
synchronousmotors.7. To study and design the earthing requirements for different types of installations and also to estimate the cost of earthing.
 8. To carry out an electrical energy audit of a laboratory/office/workshop. 9. Protection of buildings and allied structures against lightning. 10. To design and estimate the cost of illumination of a Residential
building/laboratory/drawing hall. 11. Lighting design: Different entities of illuminating systems; Exterior lighting- flood, street,

aviation and transport lighting.

OR

Lighting design for displays and signaling- neon signs, LED-LCD displays beacons and lighting for surveillance.

- 12. Introduction to and hands on working experience on any available programming and/or simulation platform(s), such as:
 - (i) C/C++, FORTRAN, MATLAB, SIMULINK etc.
 - (ii) ETAP (analytical engineering software)
 - (iii) Different types of Electrical design softwares (CAD) for drawing of Electrical diagrams, schematics, control circuit diagrams etc.

Note: At least ten experiments should be performed in the semester.

- 1. Raina K.B. and Bhattacharya S.K., "Electrical Design, Estimating and Costing", Tata McGraw Hill, NewDelhi.
- 2. Gupta J.B., "A course in Electrical Installation, Estimating and Costing", SK Kataria and Sons, N.Delhi
- 3. Sharma B.R. and Rai H.M., "Electrical Estimating and Costing".
- 4. Uppal S.L., "Electrical Wiring, Estimating and Costing".
- 5. Singh Surjeet, "Estimating and Costing", DhanpatRai and Co., New Delhi

INDUSTRIAL E	LF	CT	RI	CA	CAL SYSTEMS		
Subject Code:	L	Т	Р	С	C Duration: 45 (Hrs.)		
BELED1-611	3	0	0	3	3		
Course Objectives:	-	-	-	-	-		
To make the students:							
1. Familiar with the electrical wiring sy	vste	ems	fo	r r	residential, commercial and industrial		
consumers.					····, ··· · · · · · · ·		
2. To learn about various components of in	nd	ustr	ial e	eleo	lectricalsystems.		
3. To introduce to industrial automation.							
Course Outcomes:							
Students will be able:							
1. To represent the electrical wiring system	ns	for	res	ide	dential, commercial and industrial		
consumers with standard symbols and d	lra	win	gs,S	SLI	LD.		
2. To explain various components of indus	stri	ial e	elec	tric	ricalsystems.		
3. To analyze and select the proper size of	f va	ario	us e	elec	ectrical systemcomponents.		
UNIT-	-I ([11]	Ho	urs	rs)		
Electrical System Components: LT syst	ten	1 W	irin	g c	components, Selection of cables, wires,		
switches, distribution box, metering syste	em	, T	arif	f s	structure, protection components; Fuse,		
MCB, MCCB, ELCB, Inverse current cha	irac	cteri	istic	cs,	s, Symbols, Single line diagram (SLD) of		
a wiring system, Contactor, Isolator, Re	elay	ys,	MP	CE	CB, Electric shock and electrical safety		
practices.							
UNIT-	Π	(12	Ho	ur	irs)		
Posidential and Commercial Electrica	1	Swat	tom		y. Types of residential and commercial		
Residential and Commercial Electrica	. 1	JyS			s. Types of residential and commercial		

wiring systems, General rules and guidelines for installation, Load calculation and sizing of wire, Rating of main switch, distribution board and protection devices, Earthing system calculations, Requirements of commercial installation, Deciding lighting scheme and number of lamps, Earthing of commercial installation, Selection and sizing of components.

Illumination Systems: Understanding various terms regarding Light, Lumen, Intensity, Candle power, Lamp efficiency, Specific consumption, Glare, Space to height ratio, Waste light factor, Depreciation factor, various Illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, Energy saving in illumination systems, Design of a lighting scheme for a residential and commercial premises, Flood lighting.

UNIT-III (11 Hours)

Industrial Electrical Systems – **I:** HT connection, Industrial substation, Transformer selection, Industrial loads, Motors, Starting of motors, SLD, Cable and Switchgear selection, Lightning protection, Earthing design, Power factor correction;kVAR calculations, type of Compensation, Introduction to PCC, MCC panels, Specifications of LT Breakers, MCB and other LT panel components.

UNIT-IV (11 Hours)

Industrial Electrical Systems – II: DG systems, UPS system, Electrical systems for the elevators, Battery banks, Sizing the DG, UPS and battery banks, Selection of UPS and batterybanks.

Industrial Electrical System Automation: Study of basic PLC, Role in automation, Advantages of process automation, PLC based control system design, Panel metering and introduction to SCADA system for distribution automation.

Recommended Text Books / Reference Books:

- 1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.
- 2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.
- 3. S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997.
- 4. Web site for ISStandards.
- 5. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008.

NON-LINEAR & DIGITAL CONTROL SYSTEMS							
Subject Code:L T P CDuration: 45 (Hrs.)							
BELED1-612 3 0 0 3							
Course Objectives:							
1. To introduce to discrete system analysis.							
2. To introduce to stability aspects of discrete time systems.							
3. To introduce to design of digital control and discrete output feedback control.							
Course Outcomes:							
Students can:							
1. Represent discreteLTIsystems.							
2. Analyse stability of open loop and closed loop discrete-timesystems.							
3. Design and analyse digital controllers.							
4. Design state feedback and output feedback controllers.							
UNIT-I (10 Hours)							
Discrete Representation of Continuous Systems:							
Basics of digital control systems, Discrete representation of continuous systems, Sample and							
hold circuit, Mathematical Modeling of sample and hold circuit, Sampling and Quantization,							
Choice of sampling frequency, ZOHequivalent.							
UNIT-II (12 Hours)							

Discrete System Analysis:

Z-Transform and Inverse Z Transform for analyzing discrete time systems, Pulse Transfer function, Pulse transfer function of closed loop systems, Mapping from S-plane to Z plane,

Solution of Discrete time systems, Time response of discrete time system.

Stability of Discrete Time System:

Stability analysis by Jury test. Stability analysis using bilinear transformation. Design of digital control system with dead beat response. Practical issues with dead-beat response design.

UNIT-III (12 Hours)

State Space Approach for Discrete Time Systems:

State space models of discrete systems, State space analysis, Lyapunov Stability, Controllability, Reach-ability, Reconstructibility and observability analysis, Effect of pole zero cancellation on the controllability & observability.

Design of Digital Control System:

Design of Discrete PID Controller, Design of discrete state feedback controller, Design of set

point tracker, Design of discrete observer for LTI System, Design of discrete compensator.

UNIT-IV (11 Hours)

Discrete Output Feedback Control:

Design of discrete output feedback control, Fast output sampling (FOS) and periodic output feedback controller design for discrete time systems.

Introduction to Optimal Control and Non-linear Control:

Performance indices, Regulator problem, Tracking problem, Nonlinear system, Basic concepts and analysis.

- 1. K.Ogata, "DigitalControlEngineering", PrenticeHall, EnglewoodCliffs, 1995.
- 2. K.Ogata, "ModernControlEngineering", PrenticeHall, 1991.
- 3. M.Gopal, "DigitalControlEngineering", WileyEastern, 1988.
- 4. B.C.Kuo, "DigitalControlSystem", Holt, RinehartandWinston, 1980.
- 5. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.
- 6. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009
- 7. G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", Addison-Wesley,1998.

СОМ	PUTER	AR	CH	ITE	CTURE
Subject Code:	L	Т	Р	С	Duration: 45 (Hrs.)
BELED1-613	3	0	0	3	
Course Objectives:					
1. To develop the concept of comp	outer archi	tect	ure	and	its operation.
2. To understand the concepts of m	nicroproce	esso	rs, t	heir	principles andpractices.
3. To know about memory organis	ation.				
Course Outcomes:					
1. Organize a modern computer sy	ystem and	be	able	e to r	elate it to realexamples.
2. Write efficient programs in asse	embly lan	gua	ge c	of the	e 8086 family ofmicroprocessors.
3. Develop the programs in assem	bly langu	age	for	8028	36, 80386 and MIPS processors in
real and protectedmodes.					
	UNIT-I	(1)	l Ho	ours	
Introduction to Computer Organ	nization:				
Architecture and function of gener	ral compu	ter	syst	em,	CISC Vs RISC, Data types, Integer
Arithmetic, Multiplication, Divisio	n, Fixed a	and	Floa	ating	point representation and arithmetic,
Control unit operation, Hardwa	re imple	me	ntati	ion	of CPU with Micro instruction,
microprogramming, System buses,	Multi-bu	s or	gan	izati	on.
	UNIT-I	I (1	2 H	ours	;)
Memory Organization: System r	nemory (acl	ne n	nem	Types and organization Virtual
memory and its implementation	Memory 1	nan	age	men	t unit Magnetic hard disks Optical
disks	vienory i	man	ugo	men	i unit, Mugnetie nurd disks, Optieur
disks.					
Input – output Organization: Ac	cessing I/	O d	evic	es, I	Direct memory access (DMA) and its
controller, Interrupts and interrup	pt contro	ller	s, A	rbit	ration, Multilevel bus architecture,
Interface circuits, Parallel and seria	al port, Fe	atur	es c	of PC	I and PCI express bus.
	UNIT-II	I (1	1 H	lour	s)
16 and 32 Microprocessors: 80	x86 Arch	itec	ture	e, IA	A - 32 and IA - 64, Programming
model, Concurrent operation of	EU and	B	U,	Rea	l mode addressing, Segmentation,
Addressing modes of 80x86, Instru	ction set	of 8	0x8	6, I/	O addressing in80x86
	UNIT-I	V (1	11 H	Iour	s)
Pipelining . Introduction to pipelini	ng Instru	ctic	n le	vel	nipelining (II P) Compiler techniques
for II P Data hazards Dynamic s	chedulino		enei	ndah	ility Branch cost Branch prediction
Influence on instruction set					
Different Architectures.					
VLIW Architecture DSP Architec	ture SoC	are	hite	cture	MIPS Processor and programming
Recommended Text Books / Referen	nce Rook	s:		ciure	, mit of rocessor andprogramming.
Accommended Text Doors / Acter	ILL DUUK				
1 V Carl G Zvonko and S G Z	aby "Cor				

- 2. B. Brey and C. R. Sarma, "The Intel microprocessors", Pearson Education, 2000.
- 3. J. L. Hennessy and D. A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kauffman, 2011.
- 4. W. Stallings, "Computer organization", PHI,1987.
- 5. N. Mathivanan, "Microprocessors, PC Hardware and Interfacing", Prentice Hall, 2004.
- 6. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 8086/8088 Family", Prentice Hall India, 1986.
- 7. J. Uffenbeck, "The 8086/8088 Design, Programming, Interfacing", Prentice Hall, 1987.
- 8. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, 1991.
- 9. P. Able, "8086 Assembly Language Programming", Prentice HallIndia.

COMPUTATIONA	LI	ELF	EC]	FR(MAGNETICS		
Subject Code:	L	Т	Р	С	Duration: 45 (Hrs.)		
BELED1-614	3	0	0	3			
Course Objectives:							
1. To introduce to the basic concepts of el	ectr	roma	agn	etics	s and analytical methods.		
2. To understand computational technique	es f	or co	om	puti	ngfields.		
Course Outcomes:							
1. Explain the basic concepts of electroma	gne	etics					
2. Use computational techniques for elect	ron	nagn	neti	cfiel	lds.		
3. Apply the techniques to simple real-life	pro	obler	ms.				
UNI	ſ-I	(15	He	ours			
Introduction:							
Conventional design methodology, Com	pute	er ai	ide	d de	sign aspects, Advantages, Review of		
basic fundamentals of Electrostatics a	nd	Ele	ectr	oma	gnetics, Development of Helmhotz		
equation, Energy transformer vectors, P	oyn	ıting	g ar	nd S	Slepian, Magnetic diffusion-transients		
and time-harmonics.							
Analytical Methods:							
Analytical methods of solving field equ	ıati	ons,	m	ethc	d of separation of variables, Roth's		
method, Integral methods, Green's function	on, I	Metl	hoc	l of	images.		
UNIT	'-II	i (15	H	ours	\$)		
Finite Difference Method (FDM):		1					
Finite difference schemes, lifeatment of solutions, Finite difference time domain (ITTE FD	gula	ar t	ooun otho	daries, Accuracy and stability of FD		
Finite Element Method (FEM):		1D)		Juio	u, omqueness and convergence.		
Overview of FEM, Variational and Gal	erk	in N	Лet	hod	s, shape functions, lower and higher		
order elements, vector elements, 2D	and	3 E) f	finite	e elements, efficient finite element		
computations.							
UNIT	-II]	I (15	5 H	our	s)		
Special Topics:							
Background of experimental methods, El	ectr	colyt	tic t	tank	, R-C network solution, Field plotting		
(graphical method), Hybrid methods, Con	ıple	ed ci	ircu	1it, I	Field computations, Electromagnetic -		
thermal and electromagnetic - structural c	oup	oled	cor	mpu	tations, Solution of equations, Method		
of moments, Poisson's fields.	of moments, Poisson's fields.						
Applications:							
Low frequency electrical devices, Static/	tim	ie-ha	arm	ionia	c / transient problems in transformers,		
Rotating machines, Actuators, CAD packs	age	s.					
Text/Reference Books							
1. P. P. Silvester and R. L. Ferrari "Fin	ite I	Elerr	nen	t for	· Electrical Engineers" . Cambridge		
University press, 1996.					, emiliary		
2. M. N. O. Sadiku, "Numerical Techni	que	es in	ı El	ectro	omagnetics", CRC press,2001.		

	WIND & S	OL	AR	<mark>ENER</mark>	GY SYSTEMS
Subject Code:	L	Т	Р	С	Duration: 45 (Hrs.)
BELED1-621	3	0	0	3	
Course Objectives:					

1. To understand the energy scenario and the consequent growth of the power generation from renewable energy sources.

2. To develop the understanding about the issues related to the grid-integration of solar and wind energy systems.

Course Outcomes:

Students will be enabled:

- 1. To explain the basics of wind power powergeneration.
- 2. To elaborate the basics of solar power powergeneration.
- 3. To intrepret the network integration issues and the power electronic interfaces for wind and solargeneration.

UNIT-I (15 Hours)

Physics of Wind Power:History of wind power, Indian and Global statistics, Wind physics, Betz limit, Tip speed ratio, stall and pitch control, Wind speed statistics-probability distributions, Wind speed and power-cumulative distributionfunctions.

Wind Generator Topologies: Review of modern wind turbine technologies, Fixed and variable speed wind turbines, Induction generators, Doubly-Fed induction generators and their characteristics, Permanent- magnet synchronous generators, Power electronics converters, Generator-converter configurations, Converter control.

UNIT-II (15 Hours)

The Solar Resource:Introduction, solar radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar day length, Estimation of solar energy availability.

Solar Photovoltaic:

Technologies-Amorphous, monocrystalline, polycrystalline; V-I characteristics of a PV cell, PV module, array, Power Electronic Converters for Solar Systems, Maximum Power Point Tracking (MPPT) algorithms, Converter Control.

UNIT-III (15 Hours)

Network Integration Issues:

Overview of grid code technical requirements, Fault ride-through for wind farms, Real and reactive power regulation, Voltage and frequency operating limits, Solar PV and wind farm behavior during grid disturbances, Power quality issues, Power system interconnection experiences in the world, Hybrid and isolated operations of solar PV and wind systems.

Solar Thermal Power Generation:

Technologies, Parabolic trough, Central receivers, Parabolic dish, Fresnel, Solar pond, Elementary analysis.

Text / References:

- 1. T.Ackermann, "WindPowerinPowerSystems", JohnWileyand SonsLtd., 2005.
- 2. G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons, 2004.
- 3. S.P.Sukhatme, "SolarEnergy:Principlesof ThermalCollectionandStorage", McGrawHill, 1984.
- 4. H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006.
- 5. G.N.TiwariandM.K.Ghosal, "RenewableEnergyApplications", Narosa Publications, 2004.
- 6. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons, 1991.

HVDC TRANS	M	IS	SI()N	I SYSTEMS
Subject Code: I		Т	Р	С	C Duration: 45 (Hrs.)
BELED1-622	3	0	0	3	3
Course Objectives:					
1. To know about the components and type	eso	of H	IVI	DC	C systems.
2. To know the role of power electronic co	nv	ert	ers	in I	HVDC transmission.
3. To know about the use of HVDC transm	is	sio	n sy	yste	tems for power system stability.
Course Outcomes:					
Students will be able:					
1. To knowthe advantages of DC transm	is	sio	n o	ver	er ACtransmission.
2. To explain the operation of Line Com	m	uta	tec	l Co	Converters and Voltage
Source converters.					
3. To apply control strategies used for H	VI	C	tra	nsr	smissionsystem.
4. Toimprovepower system stability using	ıgl	HV	D(Csy	system.
UNIT-	[(:	12	Ho	urs	rs)
DC Transmission Technology:Compar	isc	n	of	A	AC and DC transmission; Economics,
Technical performance and Reliability, A	p	olic	atio	on	of DC transmission, Types of HVDC
systems, Components of a HVDC system	m	, I	Line	e co	commutated converter, Voltage source
converter basedsystems.				Š	
Analysis of Line Commutated Converte	rs	:Li	ne	con	mmutated converters (LCCs), Six pulse
converter, Analysis neglecting commutati	on	0	verl	ap,	p, Harmonics, Twelve pulse converters,
Inverter operation, Effect of commutation	01	verl	lap,	Ex	Expressions for average DC voltage, AC
current and reactive power absorbed by the	c c	onv	vert	ers,	s, Effect of commutation failure, Misfire
and current extinction in LCClinks.					
UNIT-	II	(12	2 H	our	irs)
Voltage Source Converters (VSCs);					
Two and Three-level VSCs, PWM scheme	s; l	Sel	ect	ive	e harmonic elimination, Sinusoidal pulse
width modulation, Analysis of six pulse co	on	ver	ter,	Eq	Equations in the rotating frame, Real and
reactive power control using a VSC.					
Control of HVDC Converters:					
Principles of Link Control in a LCC HVD0	C s	yst	em	, Co	Control hierarchy, Firing Angle Controls,
Phase-Locked Loop, Current and extincti	on	an	Igle	e co	control, Starting and stopping of a link,
Higher level controllers; Power control,	Fre	equ	ien	су	control, Stability controllers, Reactive
power control, Principles of link control in	a '	VS	CH	IVI	/DC system, Power flow and DC voltage
control, Reactive power control/AC voltage	ere	gu	lati	on.	1.
UNIT	'-I	II ((10	Но	lours)
Components of HVDC Systems: Smooth	ng	; re	act	ors,	s, Reactive power sources and Filters in
LCC HVDC systems DC line: Corona Ef	tec	cts,	In	sula	lators, Transient over-voltages, DC line
Taults in LCC systems, DC line faults in V	/S	C s	syst	tem	ns, DC breakers, Mono-polar operation,
Ground electrodes.					

UNIT-IV (11 Hours)

Stability Enhancement using HVDC Control: Basic Concepts: Power system angular, voltage and frequency stability, Power modulation, basic principles, Synchronous and asynchronous links, Voltage stability problem in AC/DCsystems.

MTDC Links: Multi-Terminal and Multi-Infeed systems, Series and parallel MTDC systems using LCCs, MTDC systems using VSCs, Modern trends in HVDC technology, Introduction to modular multi-level converters.

Recommended Text Books / Reference Books:

- 1. K. R. Padiyar, "HVDC Power Transmission Systems", New Age International Publishers, 2011.
- 2. J. Arrillaga, "High Voltage Direct Current Transmission", Peter Peregrinus Ltd., 1983.
- 3. E. W. Kimbark, "Direct Current Transmission", Vol.1, Wiley-Interscience, 1971.

EHVAC TRANSMISSION SYSTEMS

Subject Code:	LTPC	Duration: 45 (Hrs.)
BELED1-623	3 0 0 3	

Course Objectives:

- 1. To familiarize the students with the need and advantages associated with EHVAC Transmission.
- 2. To acquaint the students with the reactive parameters of lines and methods of voltage control.
- 3. To make them aware about voltage gradients of conductors and effects of corona.

Course Outcomes:

Students will be enabled:

- 1. To explain the advantages of EHVAC Transmission and problems associated withit.
- 2. To examine the reactive parameters of lines and use methods of voltage control.
- 3. To compute the voltage gradients of conductors and explain the associated bad effects of corona.

UNIT-I (11 Hours)

Preliminaries:

Necessity of extra high voltage (EHVAC)transmission, Advantages and Problems, Power handling capacity and Line losses, Mechanical considerations, Resistance of conductors, Properties of bundled conductors, Bundle spacing and bundle radius, Examples.

Line and Ground Reactive Parameters:

Line inductance and capacitance, Sequence inductances and capacitances, Modes of propagation, Ground return, Examples.

UNIT-II (12 Hours)

Travelling Wave Theory:

Traveling wave expression and solution, Source of excitation, Terminal conditions, Open circuited and Short-circuited end reflection and refraction coefficients, Lumped parameters of distributed lines, Generalized constants, No load voltage conditions and Charging current.

Voltage Control:

Power circle diagram and its use, Voltage control using synchronous condensers, Cascade connection of shunt and series compensation, Sub synchronous resonance in series capacitor, Compensated lines, Static VAR compensating system.

UNIT – III (11 Hours)

Voltage Gradients of Conductors:

Electrostatics, field of sphere gap, field of line charges and properties, Charge, Potential relations for multi-conductors, Surface voltage gradient on conductors, Distribution of voltage gradient on sub conductors of bundle, Electrostatic field, Calculation of electrostatic field of EHV/AC lines, Effect on humans, animals and plants, Electrostatic induction in unenergized circuit of double-circuit line, Electromagnetic interference, No load voltage conditions and chargingcurrent.

UNIT-IV (11 Hours)

Corona Effects:

Power loss and audible noise (AN), Corona loss formulae, Charge voltage diagram, Generation, Characteristics, Limits and Measurements of AN, Relation between 1- phase and 3-phase AN levels, Radio interference (RI), Corona pulses: generation, properties, limits, frequency spectrum, Modes of propagation, Excitation function, measurement of RI, RIV and Excitation functions.

Recommended Text Books / Reference Books:

1.R.D. Begamudre, 'EHVAC Transmission Engineering', <u>New Academic Science</u>, 4th Edn.,**2011**.

2.S. Rao, 'EHVAC and HVDC Transmission and Distribution Engineering', 3rd Edn., Khanna Publishers, 2008.

FACTS DEVICES IN	TRANSMISSION & DI	STRIBUTION NETWORKS		
Subject Code:	LTPC	Duration: 45 (Hrs.)		
BELED1-624	3 0 0 3			
Course Objectives:				
1. To know about the need of	shunt and series reactive p	oower compensation.		
2. To become familiar with the working principles of FACTS devices, theiroperating				
characteristics, and applica	tions.			
3. To understand the basic con	ncepts of powerquality.			
Course Outcomes:				
2. To avalain the effect of sh	1. To analyze the characteristics of AC transmission.			
2. To explain the effect of shunt and series reactive power compensation.				
JUNIT L (11 Hours)				
		,		
Transmission Lines and Series/Shunt Reactive Power Compensation:				
Basics of AC transmission,	Analysis of uncompensation	ated AC transmission lines, Passive		
reactive power compensation. Shunt and series compensation at the mid-point of an AC line.				
Comparison of series and shu	Comparison of series and shuntcompensation.			
Thyristor-based Flexible AC	C Transmission Controlle	rs (FACTS):		
Description and characteristic	s of Thyristor-based FAC	TS devices. Static VAR compensator		
(SVC). Thyristor controlled series capacitor (TCSC). Thyristor controlled braking resistor and				
Single pole single throw (SPST) switch, Configurations/Modes of operation, Harmonics and				
control of SVC and TCSC, Fa	ult current limiter.	-		
	UNIT-II (11 Hours	s)		
Voltago Source Convertor h	and (EACTS) Controllar			
Voltage source converter based (FAC1S) Controllers:				
Pulse-width modulation for VSCs Selective harmonic elimination Sinusoidal PWM and				
Space vector modulation, STATCOM: Principle of operation, Reactive power control: Type I				
and Type II controllers. Static synchronous series compensator (SSSC) and Unified power				
flow controller (UPFC): Principle of Operation and Control, Working principle of Interphase				
power flow controller. Other Devices: GTO controlled series compensator, Fault				
currentlimiter.				
	UNIT-III (12 Hours	s)		
Application of FACTS: App	lication of FACTS devices	for power-flow control and stability		
improvement, Simulation example of power swing damping in a single-machine infinite bus				
system using a TCSC, Simulation example of voltage regulation of transmission mid-point				
voltage using a STATCOM.	-	_		
Power Quality Problems in 1	Distribution Systems:			

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY, BATHINDA Page 21 of 23

Power Quality problems in distribution systems: Transient and Steady state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-form Distortions: harmonics, noise, notching, dc-offsets, fluctuations, Flicker and its measurement, Tolerance of Equipment, CBEMAcurve.

UNIT-IV (11 Hours)

DSTATCOM (Distribution Static Compensator):

Reactive Power Compensation, Mitigation of harmonics and unbalance in distribution systems using DSTATCOM and shunt active filters, Synchronous reference frame, Extraction of reference currents, Current control techniques for DSTATCOM,

Dynamic Voltage Restorer and Unified Power Quality Conditioner:

Voltage sag and swell mitigation: Dynamic Voltage Restorer; Working principle and control strategies, Series active filtering, Unified power quality conditioner (UPQC): Working principle, capabilities and control strategies.

- 1. N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technology of FACTS Systems", Wiley-IEEE Press,1999.
- 2. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.
- 3. T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.
- 4. R.C.Dugan, "ElectricalPowerSystemsQuality", McGrawHillEducation, 2012.
- 5. G. T. Heydt, "Electric Power Quality", Stars in a Circle Publications, 1991

INTRODUCTION TO	INDUSTRIAL	MANACEMENT
	JINDUSINIAL	

Subject Code: BELES1-606

L T P C 3 0 0 3 **Duration: 45 Hrs**

Course Objectives

The aim of this course is:

- 1. To introduce the concepts of Industrial Management
- 2. To provide knowledge about various Costs and Inventory Management
- 3. To highlight the latest trend in Industrial Management

Course Outcome

After completing this course, the students will be able to:

- 1. Understand the theories and principles of modern management
- 2. Apply the concepts to the management of organizations in private and public sector
- 3. Plot and analyze inventory control models and techniques.
- 4. Understand JIT, MRP and Six Sigma

UNIT-I (10 Hrs.)

Concepts of Industrial Management: Introduction: Concept and scope of Industrial Management. Productivity: Definition, measurement, productivity index, types of production system, Industrial Ownership. Functions of Management, Evolution of Management Thought : Taylor's Scientific Management, Fayol's, Principles of Management, Douglas Mc-Gregor's Theory X and Theory Y, Mayo's Hawthorne, Experiments, Hertzberg's Two Factor Theory of Motivation, Maslow's Hierarchy of Human Needs

Introduction to Human resources management: Nature of HRM, functions and importance of HRM.

UNIT-II (10 Hrs.)

Designing Organizational Structures: Concept, Importance and characteristics of organization, Types of organization - Project, matrix and informal organization. Span of control, Delegation of authority.

Work Study: Introduction, Definition, Objectives, Steps in Work Study, Method Study: Definition, Objectives, Steps of Method Study,

Work Measurement:Purpose, Types of study:Stop Watch Methods-Steps, allowances, Standard Time Calculations, Work Sampling, Production Planning and Control

UNIT-III (11 Hrs.)

Cost Analysis: Cost classification: Prime cost, Overhead cost, Selling and Distribution Cost, Fixed cost, Variable cost, Implicit cost, Explicit cost, Replacement cost, Opportunity cost, Marginal cost **Inventory Control**: Inventory, Cost, Models of inventory control: EOQ, ABC, VED

UNIT-IV (14 Hrs.)

Quality Control:Statistical Quality Control, Control charts for variables and attributes, Acceptance Sampling- Single sampling- Double sampling plans,

Recent Trends in Industrial Management–Material Requirement Planning (MRP), Enterprise Resource Planning (ERP), Just in Time (JIT), Six Sigma-Concept and benefits.

Recommended Books

- 1. O.P Khanna, Industrial Engineering.
- 2. M.S. Saiyada, 'Minappa and Personnel Managements'. Tata Mc Graw Hill
- 3. C.B. Mamoria, 'Personnel Management', Himalaya Publications
- 4. Ravi Shankar, 'Industrial Engineering', Galgotia